READ ME: Late-Breaking Updates to the DCPB Manual

All Customers

= C11 (next to the DB9 serial connector) should be replaced with a pair of header
stakes and a shorting block (supplied for kits; installed on assembled units). When
you want to program the BS2, install the shorting block on this header to allow the
STAMP2 software to reset the BS2 for downloading. When you want to communicate
with the DCPB using a terminal program, remove the shorting block to prevent the
terminal software from causing unintended resets of the BS2. This change is in
response to several customer reports of unwanted resets and communication
problems caused by noise coupled into the BS2's ATN line through C11. The jumper
arrangement, while less convenient, is significantly less vulnerable to noise.

= When you connect the 9V battery clip or other power source to the board be sure
that the polarity is correct! The red wire (+ voltage) must connect to the post marked
+ on the DCPB. Prolonged connection (more than a second or two) of a reversed
power source will fry the voltage regulator, possibly damaging other components
(including the BS2) in the process. If you're prone to connecting first and looking
later, consider leaving the header socket connected. Connect and disconnect the
battery at the polarized battery clip instead.

Kit Customers

= Read the assembly notes on page 5 of the manual carefully. If you install the
DCPB's voltage regulator Ul—and we suggest that you do unless you absolutely
require a 55uA reduction in current draw—do not install D4. The only reason to
install D4 is if you do decide to leave out U1 and C8 in order to use the BS2's
regulator. If you install both D4 and U1, you are asking for trouble, and there will be
two voltage regulators with slightly different output voltages fighting each other for
control of the +5-volt rail. This will cause instability of the power supply and
excessive current draw.

Contents

Introductory Material

Warrantyooooeeiiiiiiiiiiiins

Disclaimer of Liability

Trademarksccoooeveeiiiiiiiiiiieeeeee e

BS2 Data Collection Proto Board

PrereqUISILES fOr USINQGciii ittt e e e e et e e e e e et e e e e e aanees 1

TECHNICAI SUPPOIT ...eiieiitiie ettt e e et e e e e e s bbbt e e e e e bbr e e e e e e aanees 1

Contacting Us (Scott Edwards EIECIrONICS)ccuevieiiiiiiiiiiieciiee e 1

Contacting Parallax (Manufacturer of the BS2)cocciiiiiiiiiiiieciie e 1
Hardware Description

(O V=T V= SRR 2

B S 2-IC e e e e e e e e e —— e e e e e ae———eeeeeaabreeaeeeaab—araaeaaaararaaaaans 2

MAIN POWET SUPPIY -.eeeeeeeiiiiiie ettt et e e e e ettt e e e e ekttt e e e e e e saeeeeaeeaantbeeeaesaanneneaaeaannn 2

Peripheral Power Supply
Synchronous Serial Bus
Figure 1. Schematic diagram of the Data Collection Proto Board
Solid-State Data Storage
Real-time Clock Calendar

YN =1 (oo 1 L] o 11 €=U RPT R
Assembly

Assembling the Data Collection Proto Boardccooiiiiiiiee i 5

oL ST U o] o] A ©J) o] 1= U PRPRPPUPPRR 5

Table 1. Components of the Data Collection Proto BoArdcccccceeeiieiiiiieseesiiiiineaeneinns 6

Figure 2. Parts placement QIAQIaimoccuuieeeeiiiies e eeeeee e e e s e e e s e e e e s sivaaaaeaeaaes 7
Use and Programming

User’s Perspective on the Demonstration Programcceeieeoiiiieeeeeeniieee e 8

Programmer’s Perspective on the Demonstration Programccccceeviiiieieeniiiecee e, 10

Program Listing: EXample Data LOQQETc.uueiiiiiiiiiiiee ettt 13

Component Specifications
National Semiconductor LP2950 and 2951 5-volt Regulatorscccceeinveeiniiirenieeesnnennn
LTC1298 2-channel, 12-bit Analog-to-Digital Converter w/Serial Interface
Xicor X25640P 8192-byte Serial EEPROMSs (applies to X25128P)
NJU6355 Real-time Clock/Calendar w/Serial Interfacecocovveerieeiniee e

Warranty

Scott Edwards Electronics warrants this product against defects in materials and
workmanship for a period of 90 days.

If you discover a defect, we will, at our option, repair, replace, or refund the
purchase price. Return the product with a description of the problem. We will
return your product or its replacement using standard shipping (e.g., UPS
Ground Track). Expedited shipping, if requested, is available at the customer’s
expense.

Disclaimer of Liability

Scott Edwards Electronics is not responsible for any special, incidental, or
consequential damages resulting from any breach of warranty, or under any legal
theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, and any costs or recovering, reprogramming, or
reproducing of data associated with the use of the software or hardware described
herein.

Trademarks

PBASIC, BASIC Stamp, and BS2-1C are trademarks of Parallax, Inc. All other
trademarks are the property of their respective holders.

BS2 Data Collection Proto Board

BS2 Data Collection Proto Board

Thank you for purchasing the BS2 Data Collection Proto Board, a carrier board
with a suite of peripherals for the Parallax BASIC Stamp® I1. The Data Collection
Proto Board is a prefabricated hardware/software basis for applications requiring

= Up to 32kB of rewritable, nonvolatile EEPROM data storage

= Real-time clock/calendar

= Two-channel, 12-bit analog-to-digital converter

= Software-controlled peripheral power supply

= Support for three-wire synchronous serial bus devices

= Eight uncommitted digital input/output lines

= Grid-of-holes prototyping areas for additional circuitry

= BASIC-programmable microcontroller (BS2-1C, sold separately)

= BASIC-language subroutines and examples for using all peripherals

Although the board is ideally suited for data-logging applications, it isn’'t limited
to them. Any BS2 control or monitoring application that could benefit from a
high-precision ADC, real-time clock, or deep solid-state storage capabilities is a
good candidate for construction on the Data Collection Proto Board.

Prerequisites for Using the Data Collection Proto Board

The Data Collection Proto Board is not an off-the-shelf data logger. It is a
starting point for user-executed microcontroller designs. To use the board, you
need a BS2 microcontroller and programming package, and knowledge of your
application and the appropriate sensors, measurement methods, electronics,
mathematics, etc.

Technical Support

If you need help with the Data Collection board, contact the manufacturer, Scott
Edwards Electronics. If you need technical support for the BS2, contact its
manufacturer, Parallax, Inc.

Contacting Us
Scott Edwards Electronics
PO Box 160
Sierra Vista, AZ 85636-0160 USA
ph: 520-459-4802; fax 520-459-0623
e-mail: 72037.2612@compuserve.com

Contacting Parallax
Parallax, Inc.
3805 Atherton Road, #102
Rocklin, CA 95765 USA
ph: 916-624-8333; fax 916-624-8003; BBS: 916-624-7101
e-mail: info@parallaxinc.com; file transfer via Internet: ftp.parallaxinc.com

BS2 Data Collection Proto Board

Overview

The Data Collection Proto Board brings together a BASIC-programmable
microcontroller (the BS2-1C) and a set of peripheral devices that extend its
capabilities, particularly in the area of collecting, time-tagging, and recording
data. Here’s a quick tour of the board, shown schematically in figure 1:

BS2-1C. The BS2-IC is a single-board-computer (SBC) in 24-pin DIP format.
Based on a 20-MHz RISC controller, the PIC16C57, the BS2 runs a control-
oriented dialect of the popular BASIC programming language. The BS2 can
execute 3000 BASIC instructions per second, and its repertoire includes
synchronous and asynchronous (RS-232-style) serial 1/0; frequency and pulse 1/0;
pseudo-sinewave and DTMF generation; frequency counting; 16-bit integer math;
appliance-control X-10 output; and a host of others. The BS2, which normally
draws about 8 mA, has short- and long-term sleep modes to further conserve
power.

The BS2-IC is programmed through a temporary serial connection to a PC
running the manufacturer’s host software. Its onboard 2kB EEPROM can hold a
program of approximately 500 BASIC instructions.

Because of its IC-style packaging, the BS2-IC requires a carrier board for
convenient connection to peripherals, sensors, and outputs. The manufacturer
(Parallax) offers a generic carrier board, consisting of a programming connector,
battery clips, reset button, and grid-of-holes prototyping area. The Data
Collection Proto Board extends this concept by putting commonly needed
peripherals like power supplies, analog input, clock, and solid-state data storage
onto the carrier board.

Main (Unswitched) Power Supply. The BS2-1C has an onboard 5V, 50mA
low-dropout voltage regulator. This regulator is entirely adequate for powering
the BS2 itself, but does not offer enough current capacity for some peripherals.
Early BS2 models experienced a higher-than-normal failure rate of this onboard
regulator. So, for flexibility and reliability, the Proto Board provides a 5V, 100mA
regulator, consisting of U1 and associated components.

Peripheral (Switched) Power Supply. The Proto Board places a second 5-V,
100mA power supply under the control of a BS2 1/O pin (P9). This lets an
application conserve battery power by shutting down portions of the circuit under
program control. Since the installed peripherals (EEPROM, ADC, clock) draw at
most a few mA, almost all of the regulator’s capacity is available for user circuits.

Synchronous Serial Peripheral Bus. The BS2 has instructions for
communicating with serial peripherals with SPI/Microwire-type three-wire
interfaces. The Proto Board takes advantage of these instructions by assigning
two 1/O pins (P15 and P14) as dedicated clock and data lines to be shared by all
standard or user-installed peripherals. To talk to a peripheral on the bus, the
program activates the device’s chip-select or enable line, then shifts data in or out
using the BS2 instructions Shiftin and Shiftout.

BS2 Data Collection Proto Board

pJeog 01014 UonI8||0D e1ed ayl Jo weibelp onewsyds T ainbi4

u3 ano
-
#me dens yo
(snwe) |ene) [(ene) NOVTS62d
drto dnro u::.o
20} 20 MOogd esuss
NI 1NO
(K1eneq A6) s
(sn ‘en ‘zn) OPAST 03 L+
Qv 'sSWoyd33d
01 AS+ A

z%:w 1aMmod (payoums) elaydiiad

(dnxoeq
noy-9)
GSE9NCN 03
NG+

aan
zsg 01

+

nro
010

NG+ hd

VVENT
€a

T ol

7805621 (luaweq A6)
n

OPAST 01 L+

Alddns Jamod (payosimsun) snonuiuod

(AG—0) w1 Bojeue

“Z€ 01 8feI0lS 210} BSEBIOUI 0} £N PUE 2N 10} PBSN 8] Aew S8ZTIGZX

sfesayduad | ppe
01v.1va pue 310

pieog 0jo0id Uol}d93]]j]0) eleqa ¢cSd

0T
sn = vy vn = en = zn =
—Jua ano ﬂl ——— {0 ano ﬂl —is ano U —1]is ano U Jadwnf
(T1d) NT AT TTO 8y} 8AOWal ‘B1emyos
noq THO 310 1X s dm e pros dm 2 JeUIULID) UIIM 21e01UNWW0D
W — [gosze =P 1o 0] "TTD e X20]q sadwinl e
T 862TO11 GSE9NCN T IX or9gzx | (S)As+ ovaszx | (Sas+ [eIsul ‘258 oup weiBoid ol
9 o 0HO —viva wxp—T gloH 0s gloH os
ﬁm 2N S2) ﬁu N o u_ (o1d) 2N A2 u_lﬁn: N A2 W (z1d)
(on wouy) (90 ‘TN wou) (on wouy) (on wou)
PayoIMS NG+ payoNmMsun AG+ PaydNMs AG+ PayoNMs NG+
) oa<m 8d Id m_ —_
cud ,m:QﬁEm 6d 9d M
OI_NCN [&7]
——157] 01d sd [or] suoneoldde
L|— 30 @_.z [e7] T1d vd 6] 1asn 1o} sau
05933 7 714 ed M_ 0/I 8sodind
AT — -[eJaua9
1SO 33 771
By =233 fe1) €1d zd |7]
viva] Nwm
. [e1] v1d Td [9]
310
[oz] g1d od |s] _|
AG+ payoumsun Tz] AaA SSA v
eaJe BuidAioloid ajdwy « umopinys/m Aiddns Jamod esayduad yw-00T _ o|>\,\,|_m 13534 NLY H_m .
10198UU09 BuiwwrelBold/euas ul-)jing « 0av ¥g-2T ‘|suueyd-g « T - ezl ssa NS |z
. - - . uonng - 0zz
snq elsyduad [euas 1epUB[EIO0[D BWN-[eal paxorg-loioede) a0z _m NIA nos |t
SHN.ID WOISND 10} SO/| Pashun g « abelols e1ep NOYdIT PIZE 01 8 » N\

‘mojag
BIEES

«TTD, paXrew
Jadwinpy

(o1 reuss % BuiwwesBoud)
10129UU09 BJewWws)

6490 unow god a|Bue-1ybry
T ¢

bbb

BS2 Data Collection Proto Board

Solid-State Data Storage. The Proto Board accommodates 8 to 32kB of
EEPROM (electrically erasable, programmable, read-only memory) for storing
data—sort of a solid-state disk drive. The board hold two Xicor X25640P (8kB
each) or two X25128P (16kB each). These devices may be read and written like
RAM, but retain their contents with power off. This makes it possible to recover
data recorded by a system that has experienced power failure or even physical
damage. EEPROMSs do eventually wear out after repeated writes, and should be
replaced after 100,000 write cycles. Put in perspective, writing each address of
32kB of EEPROM at a rate of one byte per second would take almost 104 years to
hit the nominal wear-out point.

Real-time Clock/Calendar. An NJU6355 clock/calendar chip keeps track of the
current time, date, and day of the week in BCD (binary-coded decimal) format.
Data from the clock may be used to time tag data recorded to EEPROM, or
factored into program decisions (e.g., weekday vs. weekend in a setback thermo-
stat). Power to the clock chip is backed up by a large capacitor, allowing it to keep
time for 6 to 24 hours with system power removed. Timekeeping is unaffected by
shutdown of the peripheral power supply.

Analog Inputs. An LTC1298 12-bit ADC (analog-to-digital converter) provides
two voltage-measuring inputs with 1.22-millivolt resolution (5 volts range/4096
parts). Under software control, the inputs may be used as separate single-ended
inputs (referenced to ground) or as one differential input. The ADC has a sample-
and-hold feature that takes a snapshot of the input voltage at the instant of the
measurement request, allowing it to sample noisy, or fast-changing inputs.
Measurements are referenced to the peripheral power supply, which is
exceptionally stable.

BS2 Data Collection Proto Board

Assembling the Data Collection Proto Board

Table 1 lists the components of the board by part number and description. Labels
on the circuit board, and figure 2, show where and how the components should be
installed. Please review the following construction notes before installing the
components:

= The resistors and diodes are mounted on end. To prepare them for %\
installation, bend them into hairpin shapes as shown at right.

= Each diode location is marked with a printed stripe showing where
the banded end (cathode) of the diode should go.

= Two different glass-body diodes are included in this package, a 1N34/270
and a 1N4148. The markings on the body are hard to read, but the 1N34/270 is
much larger than the 1N4148.

= The locations of polarized capacitors such as C5 and C8 have a + marking by
one pad. On the capacitors themselves, the + lead is distinguished by a + mark
on the body, a longer lead, or a — mark on the other lead.

= |C outlines are marked with a notch at the pin-1 end. Install sockets so that
their notches match the printed outlines. (Do not solder ICs other than Ul
directly to the board; use the supplied sockets.)

< Install Ul so that its flat side matches the flat side of the outline printed on
the board.

= The pads marked D1, D2, D4, and C9 are normally left empty.

= The crystal (small metal cylinder, marked XTAL on the board) may be
installed standing up or lying down (flat to the board). A piece of adhesive foam
tape may be used to secure and cushion the crystal in the lay-down position.
Figure 2 shows the crystal installed with the foam tape.

< Depending on the option you choose for the power supply (discussed below),
you may have one component left over, a 1N4148 diode.

Power Supply Options. The BS2 can operate from the Proto Board'’s
regulated power supply, or from its own onboard regulator. The table below
shows the relative virtues of the two power supplies.

BS2 Supply Proto Board Supply
Output current (max): 50 mA 100 mA
Quiescent current: 20 pA 75 A
Reversed input: vulnerable to damage resistant to damage

If you want to use the built-in BS2 power supply in order to reduce current
draw in sleep mode, assemble the Proto Board without U1 and C8 and install a
wire jumper or 1N4148 diode at location D4. The wire jumper will give you
more battery life, but the diode will protect the fragile built-in voltage regulator
from accidental reversed battery connection.

*a|crela. aiow st juawabuelre syl ‘69
ay} ybnolyy Ajjeuas aredlunwiwod 01 I arowal ‘weiboid o1 Jadwinl ayy |reisu| ‘uoireulquiod Jadwnluapeay e yum pasejdas si ded siyl ‘sjppow Jaje| u|
*10109UU092 Q@ UIF|INg 3yl ybnoiyy uonesiunwwod pue Buiwwelboid usamiag youms 0l TTD e pajfeisul sem Jonoeded 4rl-1°0 e ‘9dDA [eulbuo ay Uy

BS2 Data Collection Proto Board

addazsd | 9|3 spremp3 'S pJeoq 1Nd.Id pajuld adod zsdg god T

€GT60T odswer spes| ,9/M deus \Cmﬁmm 1py/m deus N6 — T

dN-S.€08d Kax-161g uonnqgysnd wuwg uonnqysnd 1S T

G0Z2TT ooswer 1920s dIq uid-8 8dia — S

TGE6E ooswer 193008 d1@ uid-¥z dNl vzdia — T

OovT6T odawer 20|q @C_tor_m ‘_mQEsﬂ — T

TYEE0T odawer | Ispeay dfew 1eu0d-g Ipy zxT «TTO ‘2 Zz

TS670T [ORETT=T way 6aa a|bue-ybry wa} 69d i T

8€09¢ odawer 3polp uodl(IS 8yTyNT | (G 'Bd 8ss) va T

T¥6GE odawrer apoIp wniuewsss | 0/ZNT 10 VYENT €d T

AN-M93M0T Aoy-Biq | Joisisal Wil uogred %G M8/T M0T L' Z

AN-MG3IMT Aax-161q | Joisisal Wil UogIed %G M8/T T 9's'e'zd 2

aN-Y930zz Aoy-iBIQ | Joisisal Wil uogled %G MB8/T ‘0ZZ T T

aN-TS69d Kax-161g | deo dnxoeq DAAM GG 4/¥0°0 90 T

aN-9z0zd Aox-161q | ded uel DAAM 9T-0T 4riot G'8D 4

969-ST 194SOH ded DaAM 0§ 4170 0T'.D 710 9

¥8SYT ooswrer e1sAid ZHM89/.'2€ | VLIX 41 89/2€ IVLX T

AN-NOV1S62d1 Kax-161g loyenBai yon-g NOVTS62dT 9N T

AN-8NO862TOL Kax-161Q 2av 19-21 8NO862TO11 aN T

AdN-J3SSE9NCN Kax-161g IETVETERINE) a3SSEINCN N T

NOYd33 g1 Z€ | '09|3 spiemp3 'S INOYd33 [euss g9t 82TGZX €N ‘zn z

NOYd3I3 g4 9T | "09|3 spremp3 'S INOYd33 [elss a8 09G2X en ‘zn z

AaN-Z490S62d1 Ray-161g loye|nBai jon-g Z490S62d1 n T
Nd 10puUap I0pUBA uondiiosaq anea/led | (s)loreubiseg | A1

pJeog 01014 U0N23]|0D BIed ay) Jo slusauodwo) ‘T a|gel

BS2 Data Collection Proto Board

4S5V WS

(c> S. Edwards '95

BS2 Data Collection Proto Board o

U1

@I |O

c8 c9 D2 C1o

POWER
-1svaer AT

D1, D2, D4, and C9 are normally not installed.
The banded (cathode) end of D3 goes to the pad nearest the D3 label.
All ICs except U1 are mounted in sockets. Notches mark the pin-1 ends.

Capacitors C5, C6, and C8 are polarized; make sure that their + leads go to the + pads.

C11 is not a capacitor; it's a 2-contact header block.

Figure 2. Parts placement diagram.

BS2 Data Collection Proto Board

Using and Programming the Data Collection Proto Board

The Data Collection Proto Board comes with an example program on disk. The
purpose of this program is twofold: (1) It allows you to test and demonstrate the
board’s peripherals, and (2) It provides a set of useful subroutines for incorpora-
tion into your own programs. Scott Edwards Electronics grants purchasers of any
Data Collection Proto Board package that includes this disk unlimited rights to
use, modify, and distribute this program or programs incorporating routines from
this disk without further permission or payment.

User’s Perspective on the Demonstration Program. To get acquainted with
the example program, install a BS2-I1C in the Proto Board socket, connect the
Proto Board to your PC and power (red wire is +), install the jumper at C11, and
download the program to the BS2 as described in the Parallax documentation.

Next, boot up terminal software. Set the terminal software for 9600 baud, no
parity, 8 data bits, 1 stop bit. Also configure it to always execute a linefeed when
a carriage return is received (in ProComm, press ALT-F3).

Remove the jumper from C11. Connect power to the Proto Board or, if power is
already connected, press the RESET button. The following menu/prompt will
appear on the screen:

BS2 Dat a Logger

(ADC (T)ime (Qlock (Read (Dunmp (Eyrase (L)og

>

Typing the first letter of any item executes the corresponding instruction. If you
leave power connected for more than 60 seconds without pressing any key, the
program will begin logging data. If you want to prevent that, periodically press
any key to restart the logger’s internal countdown. You may also abort any
instruction by pressing RESET. Here's a description of each of the menu items:

(A)DC: Press A to view ground-referenced voltage readings (0 to 4095
representing voltages of 0 to 5 volts) from the two channels of the ADC. This is
handy for testing sensors or obtaining data for calibration purposes. Data
displayed on the terminal screen looks like this:

Ch0: 557
Chl: 3463

(T)ime: Press T to view the clock/calendar chip’s current reckoning of the time
and date. The terminal displays (for example):
11:09: 14
01/ 10/ 96

If the time is not set all digits will display as E for “error.”

BS2 Data Collection Proto Board

(C)lock: If the time/date displayed by the logger’s clock is wrong, pressing C lets
you correct it. In the example display below, prompts are in bold type, user
entries are light. DOW stands for day-of-week, and you may pick any day as
number 1. Sunday or Monday are usual choices.

Year (YY): 96
Month (MV): 01
Day (DD): 10
DOW (1-7): 3
Hour (HH): 11

M nute (MM: 10

(R)ead: Pressing R causes the logger to read back data from its EEPROM
memory. It will stop when it encounters blank memory; locates a bad checksum
indicating the possibility of corrupted data; or reaches the end of the EEPROM.
For neatly aligned display on the screen and compatibility with spreadsheets, the
entries are separated by tab characters.

521 3466 10:11:06
522 3464 10:12:04
522 3461 10:13:03
523 3466 10:14:02
523 3462 10:15:00
524 3466 10:15:59
0 0 00: 00: 00
St opped. End of data.

(D)ump: If you need to examine memory byte-by-byte, pressing D dumps a
hexadecimal (hex) listing of the entire contents of memory. Each line begins with
a hex number representing the starting point in memory of that line of data.

0000: 01 E3 OD 7A 09 01 08 7D 01 E3 OD 83 09 02 07 86
0010: 01 E3 0D 83 09 03 05 85 01 E5 OD 82 09 04 03 85
0020: 01 E4 0D 83 09 05 01 84 01 E5 OD 87 09 05 59 E1 ...

You can stop the hex dump by pressing RESET.

(E)rase: Pressing E writes Os to all bytes of the installed EEPROM. This
process can take 5 minutes to complete. When it's over, a new menu/prompt
appears on the terminal display.

(L)og: Pressing L bypasses the 60-second delay and starts the logging process
immediately. This is primarily useful for test runs of the logger, since
disconnecting the serial cable between the PC and logger causes the logger to
reset and start another countdown. During the logging process, the device will
record measurements from each of the two ADC channels about once a minute,
storing the readings, the time, and a checksum into EEPROM memory. The
checksum serves as a simple indication of whether or not the data was recorded
correctly, like the parity bit in serial communications. Between measurements,
the logger goes into battery-saving sleep mode, reducing current draw to less
than 1 mA.

BS2 Data Collection Proto Board

Programmer’s Perspective on the Demonstration Program. As the
schematic in figure 1 shows, the Proto Board consists primarily of a serial bus
supporting four peripheral ICs; the two EEPROMSs, clock, and ADC. So it makes
sense that the primary job of the program is to drive these devices using the BS2
instructions Shiftout and Shiftin.

The other defining feature is the extensive use of Serin and Serout to interact
with the user as described in the section above. The program uses PBASIC's
serial formatting capabilities to translate between internal data formats (like the
binary-coded decimal array of the clock) and more human-friendly forms.

Since the program is extensively commented, | won't repeat those details here.
What | will do is explain how to use and build on the peripheral subroutines for
your own applications.

EEPROMs. The EEPROM routines let you write a byte of data to any address
within the two-chip EEPROM memory. For example, suppose you have 16kB of
EEPROM (two X25640P chips) installed. You set the address (EEaddr) to 9000
and gosub EEread to read back the data stored at that address. EEread first
determines which EEPROM contains the given address. Since 9000 is greater
than the highest address available in the lower EEPROM, EEPROM 0, the
subroutine pickEE selects EEPROM 1. Another subroutine, send_addr, strips off
the bits of the address exceeding 8191—the largest address in the X25640s—
when it sends out the address message to EEPROM 1. So these subroutines
cooperate to make two EEPROMSs look like one big EEPROM. The address value
EEaddr is unaffected by these adjustments. After EEread, EEaddr still contains
9000, but EEdata now contains the byte stored at that location in the combined
EEPROM.

In our data-logging example, bytes are written to sequential EEPROM addresses
starting at 0 and working upward toward the maximum address of the installed
EEPROM. The send_addr subroutine can be instructed to increment (add 1 to)
the address after each read or write. This is controlled by the bit EEincr; if it's 1,
increment; if 0, don’t increment. In the example above, if EEaddr were 9000 and
EEincr were 1, after EEread, EEaddr would contain 9001.

The EEPROM routines can also maintain a checksum. What's a checksum? It's a
running total of a series of values written to or read from the EEPROM. By
comparing the checksum that was written to the checksum calculated when the
same bytes were read back, the program can detect most kinds of errors in the
data. If the checksums don't match, there’s an error in the data or checksum
itself.

The example program uses a faulty checksum as one of the conditions for ending
a read of the data log. There are only two non-automatic aspects of using
checksums: (1) The checksum byte, EEcksum, must be cleared to O before a set of
data is read or written. (2) Before reading the checksum byte itself, checksum
calculation must be turned off by setting the bit EEnoCk to 1.

10

BS2 Data Collection Proto Board

Clock. The NJU6355 maintains 24-hour time and calendar information in an
array of 13 four-bit digits. As long as its supply voltage is 2 volts or better, it
keeps very good time. The memory-backup capacitor (C6) on the Proto Board can
keep it running for more than 24 hours (at room temperature; less at extremes of
heat and cold). Because of this backup capability, you don’t have to rush to
change the battery or worry about power failures.

The time/date is stored as binary-coded decimal (BCD) digits. Each digit is
represented by a four-bit value. Four bits can represent values from 0 to 15, but
BCD uses them only to represent the numbers from 0 to 9. It reserves values
greater than 9 for error codes or other purposes.

A side effect of this way of storing a series of digits is that the hexadecimal (hex)
numbering system is also based on four bits. Where hex overlaps BCD the two
are the same; the numbers 0 through 9 hex have the same bit patterns as 0
through 9 BCD. So the example program uses the BS2's hex formatting
instructions to read and write the BCD digits of the clock.

Your program can access the digits of the date and time through the array called
DTG(). The program includes 13 constants that identify the array entry that
contains a particular digit. For instance, the tens digit of the seconds is in
DTG(S10s).

This brings up a couple of issues related to time. The program uses the BS2's
Sleep function to power down the controller for 60 seconds between samples.
Since it records the actual time each sample was taken, the relative inaccuracy of
the Sleep interval doesn’'t matter much.

But suppose you wanted to sample at exact intervals; how would you handle
that? Since our units of time don't follow normal math rules (22:25 + 4:40 is not
26:65!), adding the interval to the current time and waiting 'til then involves
some awkward programming. A method I like works like this: Suppose you want
an interval of 1 minute. Record the current minute digit in a variable, then enter
a loop in which the BS2 naps for, say, 1.3 seconds at a time. When it wakes up, it
gets the current time and compares the minutes digit to the stored digit. If it's
the same, it goes back to sleep. If it's different, the program takes a
measurement. It records the new minute digit, and goes back into the nap loop.

Using this method, the program will synchronize its sampling with the rollover
from one minute to the next; taking a new measurement every minute, on the
minute, plus or minus a factor for the nap time between checks of the clock. The
sampling won't drift away from the actual clock time.

This technique can be extended to cover other intervals. Want 7 minutes between
measurements? Create a variable called (for instance) countDown and set it to 7.
Whenever the routine detects a change of the minutes digit, subtract 1 from
countDown. If countDown is 0, take a measurement, otherwise go back to the nap
loop.

11

BS2 Data Collection Proto Board

ADC. The ADC is the easiest peripheral to use. There are two settings: mode
and channel. To set the mode, you determine whether you want to measure the
voltage between one of the channels and ground, or between the two channel
inputs. If your measurement will be referenced to ground, you can use the two
channels as separate inputs; otherwise you get a single “differential” channel.

The next choice is the channel itself, 0 or 1. For a ground-referenced
measurement, this means just what it says—which channel to measure. For a
differential measurement, it determines which channel will be considered
positive with respect to the other.

12

BS2 Data Collection Proto Board

Program Listing: Example Data Logger

Program LOG 1. BS2

Thi s program denonstrates use of the BS2 Data Coll ection Proto Board
in a typical data-logging application. It exercises all of the
board's built-in peripheral devices, including two 8kB (or 16kB)
EEPROMs, real-tine clock cal endar, 12-bit ADC, and swi tchable
preci si on power supply.

[[NOTE: lines that were too long were split with the ~ synmbol used
to indicate continuation on the next line.]]

The BS2's upper port, pins 8 through 15, is dedicated to the
operation of the data-collection peripherals. The | ower port,
pins O through 7, is available for your application.

CLK con 15 " Cock line for all serial peripherals.

DATA con 14 " Data line for all serial peripherals.

EE CS1 con 13 " Chip-select line for EEPROM 1 (U3).

EE CSO con 12 " Chip-select line for EEPROM 0 (U2).

NJU CE con 11 ' Chip-enable for NJU6355 cl ock/ cal endar.

NJU IO con 10 " 10 (read/wite) for NJU6355; l1l=write.

Shtdwn con 9 ' Shutdown for peripheral power supply; 1=off.

ADC CS con 8 " Chip-select line for LTC1298(88) ADC.

b96 con $54 ' Baudnode for 9600 bps.

ti meout con 60000 ' At startup, wait 60 seconds for serial command.

pw On con $31 " Initial state of OUTH at peripheral power-up.
' Turns on LP2951, but deselects all chips.

tenp var byt e ' Tenporary variable used in several routines.

' SAMPLI NG CONSTANT(S)

snpl Siz con 8 Each sanple consists of 8 bytes--

' 4 of data (2 ADC results in 16-bit words)
' 3 of time (12 BCD digits for hh:mm ss)
" 1 checksum

VREN con 6 ' EEPROM opcode to enable wites.

RDSR con 5 ' EEPROM opcode to read the status register.
VARDI con 4 ' EEPROM opcode to disable wites.

ReadEE con 3 ' EEPROM opcode for read.

WiteEE con 2 ' EEPROM opcode for write.

13

BS2 Data Collection Proto Board

In the lines bel ow, use the EEsize constant that natches the
EEPROM nenory installed on your board. Delete or coment out

the other EEsize constant. This exanpl e uses X25640s, which have
a capacity of 8191 bytes per chip.

' EEsi ze con 16383 " Nunber of bytes per EEPROM (X25128).

EEsi ze con 8191 " Nunber of bytes per EEPROM (X25640).
'"EEmax con 32768 ' Total EEPROM capacity (X25128).

EEmax con 16384 ' Total EEPROM capacity (X25640).

EEt op con EEmax- snpl Si z ' Last EE address with roomfor sanple.
EEaddr var wor d ' EEPROM address for reads and writes.
EEsel var bi t ' EEPROM select (0 or 1) for address.
EEdata var byt e ' Data witten/read to/from EEPROM

EEstats var byt e ' Copy of the EEPROM status register.
EEbusy var EEstats. bitO ' EEPROM busy bit (1 = busy).
EEcksum var byte " Checksum for EEPROM reads and writes.

EEi ncr var bi t " If =1, increment EEaddr after each wite.
EEnoCk var bi t " If =1, don't do checksumfor 1 EE read.
EEbl ank var bit " If =1, then a series of EEreads was O.

The LTC1298 is a 12-bit ADC that measures 0-5 volts, referenced to
the 5-volt output of the peripheral power supply (LP2951).

The 1298 has two nodes. As a single-ended ADC, it neasures the
voltage at one of its inputs with respect to ground. As a differentia
ADC, it neasures the difference in voltage between the two inputs.

The sglDif bit determ nes the node; 1 = single-ended, 0 = differenti al
VWhen the 1298 is single-ended, the oddSign bit selects the active input
channel ; 0 = channel 0 (pin 2), 1 = channel 1 (pin 3).

When the 1298 is differential, the oddSign bit selects the polarity
between the two inputs; 0 = channel 0 is +, 1 = channel 1 is +.

The nmsbf bit doesn't matter in this application, and is set to 1

by the same logical OR that sets the start bit in the ADC subroutine.

ADcnfg var nib ' Stores configuration bits for ADC.

ADr es var wor d ' Variable to hold 12-bit AD result.

ADst b var ADcnfg.bitO ' Start bit for conmwi th ADC (al ways 1).
ADnode var ADcnfg.bitl ' Single-ended (1) or differential (0).
ADch var ADcnf g. bit2 ' Channel or + selection (0 or 1).

ADmsbf var ADcnfg.bit3 ' Qutput Os after xfer (doesn't matter).

The NJUB355ED cl ock/ cal endar chip maintains a 13-digit BCD account

of the current year, nonth, day, day of week, hour, mnute, and
second. The clock subroutines transfer this data to/froma 13-nibble
array in the BS2's RAM cal l ed "DTG' for "date-tine group." The
constants bel ow allow you to refer to the digits by nane; e.g.,
"Y10s" is the tens digit of the year. Note that there's no "am pni

i ndi cator--the NJU6355 uses the 24-hour clock. For instance, 2:00 pm
is witten or read as 14: 00 (w thout the colon, of course).

Y10s con 1 " Array position of year 10s digit.

14

BS2 Data Collection Proto Board

Yls con 0 oo " " year 1s "

Mb10s con 3 S " " month 10s "

Mols con 2 oo " " month 1s "

D10s con 5 oo " " day 10s "

Dis con 4 oo " " day 1s "

H10s con 8 o " " hour 10s "

Hls con 7 o " " hour 1s "

MLOs con 10 S " " mnute 10s "

MLs con 9 o " " mnute 1s "

S10s con 12 o " " second 10s "

Sls con 11 o " " second 1s "

day con 6 o " " day-of -week (1-7) digit.
digit var nib " Nunber of 4-bit BCD digits read/witten.
DTG var nib(13) ' Array to hold "date/time group” BCD digits.

' This programinplenents a sinple, user-friendly data | ogger.

" It can be used in two ways: If a PC running term nal software [9600
' baud, N81, carriage returns (CR) converted to CR plus linefeed,

' no handshaki ng] is connected, the program displays a menu and pronpt
' that allows the user to display the ADC readings; view set the clock,
' read, dunp, or erase nenory; or start the logger. If no terminal is
' connected, or the user doesn't press a key within a preset tine, the
' programautomatically starts |ogging data. It takes sanples from

' both ADC inputs every 60 seconds and records these, along with a

' tine-tag and error-detection checksum into EEPROM

" Initial setup.
QUTH = pwr On ' Get ready to turn on peripherals.
DI RH = $FF ' Set all bits of high port to output.
DIRL = $FF ' Set all bits of Iow port to output.
Set up ===

" When you apply power to the board, the BS2 will send a nessage at
' 9600 bps through the built-in serial port asking for setup
" instructions. If you don't press a key within timeout seconds, the

programwi || begin | oggi ng data.

set up:
serout 16, b96, [CR CR "BS2 Data Logger"] ' Sign-on and choi ces.
serout 16,b96,[CR "(A)DC (T)ine (C)Iock (R ead (Dyunmp (E)rase (L)og", CR, ">"
serin 16, b96, tinmeout, | og, [tenp] Look for instruction.

If no instruction arrives within tinmeout milliseconds, then | og data,
el se get choose from setup menu.

tenp = tenp & $0DF Convert to uppercase.

IF tenp = "A" THEN showADC ' Show current ADC neasurenent.
IF tenp = "T" THEN tine ' Show the current tine/date.
IF tenp = "C'" THEN cl ock ' Set the clock/cal endar.
IF tenp = "R' THEN r eadDat aLog ' Read data w checksuns.
IF tenp = "D' THEN dunpDat aLog ' Read entire EEPROM
IF tenp = "E' THEN eraselog ' Wite Os to all EEPROM bytes.
IF tenp = "L" THEN | og ' Start |ogging.

goto setup " Unrecogni zed entry; try again.

15

BS2 Data Collection Proto Board

' showADC =============

' Take a single-ended neasurenent fromeach of the two ADC channel s
' and send it out the built-in serial port at 9600 baud. Handy for
" calibrating anal og conditioning circuitry.

showADC:
ADmode = 1 ' Singl e-ended neasurenent.
for Abch = 0 to 1 ' Both channels, 0 and 1.
gosub ADr ead ' Read sel ected channel .
serout 16, b96, [CR, "Ch", DEC ADch,": ", DEC ADr es] ' Show result.
next " Next channel .

goto setup
" Put the time and date fromthe NJU clock chip on the screen and
' go back to the setup routine.
time:
gosub read_cl ock
gosub show tine
gosub show date

Updat e DTG dat a.
Di splay the tine.
Di splay the date.

goto setup Back to setup.
' ¢l ock =============
' Let the user set the current tine and date via the set_cl ock subroutine.
' This code just jury-rigs an IF ... THEN GOSUB ... instruction, which
" PBASI C | acks. Wen done, goes back to setup.
cl ock: ' Set the internal clock.
gosub set _cl ock
goto setup " Return to setup for nore instructions.

' Iog =T

' Take a single-ended reading fromboth ADC channels every m nute
' and records the data followed by the tine and a checksum byte to
' the EEPROM starting at address O.
I

0g:
ADmode = 1 ' Set single-ended node for ADC.
EEaddr = 0 ' Start at address 0.
EEi ncr = 1 ' Enabl e auto-increnent of EEPROM addr ess.

| ogLoop:
i f EEaddr <= EEtop then next Addr " |If EEaddr > EEtop, EEaddr = 0
EEaddr = O

next Addr :
EEcksum = 0 Cl ear the checksum for new dat a.

gosub read_C ock ' Get the current tine.
for ADch = 0 to 1 " Do both channels.
gosub ADr ead ' Get ADC result.
EEdat a = ADres. hi ghbyte ' Record the high byte of ADres word.
gosub EEnabl eAndWite ' Wite the data to EEPROM
EEdata = ADres. | owbyte ' Record the | ow byte of ADres word.
gosub EEnabl eAndWite ' Wite the data to EEPROM
next
EEdat a. hi ghni b = DTG H10s) ' Record hours.
EEdat a. | owni b = DTQ Hls)
gosub EEnabl eAndWite

16

BS2 Data Collection Proto Board

EEdat a. hi ghni b = DTG MLOs) ' Record m nutes.
EEdat a. | owni b = DTG MLs)
gosub EEnabl eAndWite

EEdat a. hi ghni b = DT S10s) " Record seconds.
EEdat a. | owni b = DT Sls)
gosub EEnabl eAndWite

EEdat a = EEcksum ' Store the checksum
gosub EEnabl eAndWite

Turn of f the peripheral power supply and sleep for approxi mtely
60 seconds (according to the BS2's internal timng). The actua

sleep time will be the nearest multiple of 2.3 seconds (59.8)
pl us or mnus about a second for oscillator tolerance.

hi gh Sht dwn " Turn off peripherals.

sl eep 60 ' Shut down for ~ 60 seconds.
| ow Sht dwn " Turn on power for clock

goto | ogLoop El se get anot her sanple.

! dun"pDat aLog ————————————=

' Dunp the entire contents of the EEPROM s) as hex digits separated

' by spaces. For conpatibility with term nal software and conveni ent

" reckoning of addresses, this | oop presents 16 entries on one line.

' This output node would be handy for recovering data from EEPROM i n
' the event a hardware or software probl em caused the checksum net hod

to fail. It's also useful for debuggi ng new data formats, since it

lets you look at all the values in the EEPROM
dunpDat aLog:

EEaddr = 0 ' Start at address 0.

EEincr =1 ' Aut oi ncrenent EEPROM addr esses
dunpLoop:

serout 16, b96, [CR, hex4 EEaddr,": "] ' Start line "<addr>; "

for tenp = 1 to 16 Put 16 entries across screen
i f EEaddr = EEmax then setup ' End of nmenory: exit.

gosub EEread ' Read a byte from EEPROM nmenory.
serout 16, b96, [hex2 EEdata," "]
next ' Show "address: <data data...>"
got o dunpLoop ' Do it again.
er aSeLOg ===

' Erase (wite 0s) to every address in the conbi ned EEPROM st orage bank
' This process takes several minutes to conplete, after which the

' "BS2 Data Logger" pronpt reappears on the screen. This is a brute-

' force erase routine, in that it does not take advantage of the

' EEPROM page-wite capabilities, or the possibility of witing to the
' two EEPROVE simul taneously. These steps mght speed the erasure

' process to a mnute or less, but at the expense of extra code.

eraselLog:
EEdata = 0: EEincr =0 ' Wite 0Os; don't increnment addr
for EEaddr = O to (EEnmax-1) ' Wite to all EEPROM addresses.
gosub EEnabl eAndWite
next
goto setup ' Done: back to setup nenu

17

BS2 Data Collection Proto Board

r eadDat aLog —=—=—=—=—=—=—======

Read tine-tagged data entries fromthe EEPROM until an invalid
checksum a string of Os, or the end of menory. Note that the
string-of-zeros condition will be falsely triggered at m dni ght,
January 1, if both ADC readi ngs happen to be zero.

r eadDat aLog:

EEaddr = 0 ' Start at EEPROM address O.

EEincr =1 ' Enabl e auto-increnent of EEPROM address.
next_entry:

EEbl ank = 1 Reset 0 flag to test for sequences of Os.

EEcksum = 0 ' Reset checksumto test for data validity.
serout 16, b96, [CR| ' Start a new line on the termnal screen.
for ADch = 0 to 1 ' Retrieve each of the recorded ADC channel s.
gosub EEread ' Read high byte fromthe EEPROM
ADr es. hi ghbyte = EEdat a " Put it into high byte of ADres.
gosub EEread ' Repeat this for the | ow byte.
ADr es. | owbyt e = EEdat a
serout 16, b96, [dec ADres, TAB]
next
gosub EEread
serout 16, b96, [hex2 EEdata, ":"]
gosub EEr ead

Di splay ADres word in decinal..
..followed by a tab character.
Now get time digits..
..show "hh:" (hours)

serout 16, b96, [hex2 EEdata, ":"] o."mm " (mionutes)

gosub EEread

serout 16, b96, [hex2 EEdat a] ' .."ss" (seconds)

EEnoCk =1 " Now, get checksum Turn off read checksum cal cul ati on.

gosub EEread And read in the witten checksum byte.

i f EEdata <> EEcksumthen invalid_sum Verify checksum

if EEcksum = 0 and EEblank = 1 then invalid_blank ' Check for Os.

i f EEaddr > EEtop then endO Log
goto next_entry

Do the next one.

i nval i d_bl ank: " Display nessage when bl anks encount er ed.
serout 16, b96, [CR "Stopped. End of data.", CR

goto setup

i nvalid_sum " Display nmessgage when checksuns don't match.
serout 16, b96,[CR "Stopped. Invalid checksum", CR]|

goto setup

endOf Log: " Display nmessage when end of nenory reached.
serout 16, b96, [CR, "St opped. End of EEPROM ", CR|
goto setup

Dependi ng on the address in EEaddr, select either EEPROM O (addresses
0-8191) or EEPROM 1 (addresses 8192-16383). Note that this routine
activates the sel ected EEPROM but |eaves it to the calling code

to deactivate it. An additional effect of the read and wite
routines is to add the value of EEdata read or witten to a variable
call ed EEcksum This checksum can serve as a marker to separate
valid data from | eftover garbage in the EEPROM It's not infallible,
but conbined with tine/date tagging, it can be very effective.

18

BS2 Data Collection Proto Board

' piCkEE —==—==========
' Based on the address in EEaddr and the size of the installed
' EEPROMB, turn on the correct EEPROM s enabl e |ine.

pi ckEE:
EEsel =0 " |I'f EEaddr <= EEsize, then EEsel =0..
| F EEaddr <= EEsi ze then skipl ' ..Else EEsel = 1.
EEsel =1
ski p1:
| ow (EE_CSO+EEsel) ' Activate sel ected EEPROM
return " Return to caller.
' EEdi sabl e =============
' Wite-protect (disable) the EEPROM
EEdi sabl e:
gosub pi ckEE
shi ftout DATA , CLK, nsbfirst, [WRDI] ' Send the disable opcode.
hi gh (EE_CSO+EEsel) ' Deactivate the EEPROM
return

' EEnabl eAndWite =============
' Check the EEPROM and wait until it's not busy. Then wite enable
' the EEPROM and wite the byte stored in EEdata to the address
' stored in EEaddr. Update the checksum byte by adding EEdata to
' the previous contents of EEcksum Finally, if EE ncr = 1,
" increnent EEaddr to point to the next EEPROM address.
EEnabl eAndWi t e:
gosub Read_stats
if EEbusy = 1 then EEnabl eAndWite
| ow (EE_CSO+EEsel)
shi ftout DATA , CLK, nsbfirst, [WREN| Send the enabl e opcode.
hi gh (EE_CSO+EEsel) Deacti vate t he EEPROM

' CGet the status register.
| ow (EE_CSO+EEsel) ' Activate EEPROM

I f busy, check again.
Acti vat e EEPROM

shi ftout DATA , CLK, nsbfirst,[Wit eEF] Send write opcode.

gosub Send_addr Send t he address.

shi ftout DATA , CLK, nsbfirst, [EEdat a] Send t he dat a.

hi gh (EE_CSO+EEsel) Deacti vat e t he EEPROM

EEcksum = EEcksum + EEdat a Updat e checksum
return Return to program

' EEread =============
' Read data fromthe EEPROM Use the address in EEaddr
' put data into EEdata. Add the value of EEdata into the byte
' EEcksum as an informal check of the validity of a sequence
" of bytes. Setting the bit EEnoCk turns off checksum cal cul ation
' for one byte read--usually the checksumitself.
' This code also clears the readZero bit whenever it retrieves
' a non-zero byte. This lets other parts of the programrecognize
" unbroken sequences of zeros, which would otherw se pass the
' checksumtest.
EEr ead:
gosub pi ckEE
shi ftout DATA , CLK, nsbfirst, [ReadEE]
gosub Send_addr
shi ftin DATA , CLK, nsbpre, [EEdat a]

Sel ect the EEPROM
Send the read opcode.
Send t he address.
Send t he dat a.

19

BS2 Data Collection Proto Board

hi gh (EE_CSO+EEsel) ' Deactivate the EEPROM
if EEnoCk = 1 then noCkSum " No cksumif bit=1
EEcksum = EEcksum + EEdat a ' Update checksum
noCkSum
EEnoCk = 0O ' Reset no-check bit
if EEdata = 0 then readZero " |If data=0, don't clear EEbl ank.
EEbl ank = 0
r eadZer o:
return ' Return to program

' Send_addr ======z========

' Send the EEPROM address for a read or wite and optionally increnent
' the address afterwards for witing sequential addresses.

Send_addr:

shi ftout DATA , CLK, nsbfirst,[(EEaddr & EEsize)\ 16]

EEaddr = EEaddr + EEi ncr ' Increnment address if bit=1.
return ' Return to program
! Read_st ats =============
' Read the EEPROM status register, which contains the wite-in-progress
" or "busy" bit. This should be checked before each wite to ensure
' that the EEPROM i s ready to accept new data.

Read_st at s:
gosub pi ckEE

shi ftout DATA , CLK, nsbfirst, [RDSR] Send read-stats opcode.

shiftin DATA , CLK, nsbpre, [EEst at s] ' Get status.
hi gh (EE_CSO+EEsel) ' Deactivate the EEPROM
return ' Return to program

read_Cl 0oCk =============
' Get the current date/tine group fromthe NJU6355 cl ock and store
'"it in the array DTG n).
read_cl ock:
low NJU I O
hi gh NJU_CE
for digit =0 to 12
shiftin DATA , CLK, | sbpre, [DTE di git)\4]

Set for read.
Sel ect the chip.
Get 13 digits.
Shift inadgit.

next Next digit.
l ow NJU CE Desel ect the chip.
return Return to program

wWri te_Cl 0oCk =============

Get the time stored in DT n) and wite it to the NJU6355 cl ock.
Note that the NJU6355 does not allow you to wite the seconds digits.
If clears the seconds digits when witten, so if you set it for
08:30 (hh:mj, when the wite is conplete, the NJU6355 starts at

08: 30: 00 (hh: mMm ss).

write clock:

high NJU 1O ' Set for wite.
hi gh NDU _CE ' Sel ect the chip.
for digit =0 to 10 ' Wite 11 digits.

20

BS2 Data Collection Proto Board

shi ftout DATA , CLK, I sbfirst, [DTG digit)\4] " Shift out a digit.
next " Next digit.
l ow NJU_CE ' Desel ect the chip.
return " Return to program
set cl ock =============

Set the cl ock/cal endar based on data entered by the user at
9600 bps through the built-in serial-port connector.

set _cl ock:
serout 16,b96,[CR "Year (YY): "]: gosub get2BCD ' Get year.
DTG Y10s) = tenp. highni b: DT Y1ls) = tenp.lownib ' Store.
serout 16,b96,[CR "Month (MM: "]: gosub get 2BCD ' Get nonth.
DTG Mb10s) = tenp. hi ghni b: DTG Mols) = tenp. | ownib ' Store.
serout 16,b96,[CR "Day (DD): "]: gosub get2BCD ' Get day.
DTG D10s) = tenp. highnib: DTG D1s) = tenp.lowni b ' Store.
serout 16,b96,[CR "DOW (1-7): "] ' Get day of wk.
serin 16, b96, [HEX1 t enp]
DTG day) = tenp.lownib ' Store.
serout 16,b96,[CR "Hour (HH): "]: gosub get2BCD ' Get year.
DTG H10s) = tenp. highnib: DTG Hls) = tenp.lownib ' Store.
serout 16,b96,[CR "M nute (MM: "]: gosub get2BCD ' Get nonth.
DTG MLOs) = tenp. highni b: DTG MLs) = tenp.lowni b ' Store.
gosub wite_cl ock

return
ShOMLdate ——————————=—==

' Display the date stored in DIG

show dat e:

serout 16, b96, [CR, HEX DTG Mb10s), HEX DTG Mdls), /", HEX DTQ D10s), -~
~ HEX DTG Dis),"/", HEX DTQ Y10s), HEX DTG Y1s)]
return
! ShOMLtinE —=—==—=———=—==—=
Display the time stored in DTG
show ti me:
serout 16, b96, [CR, HEX DTG H10s), HEX DTQ Hls), ":", HEX DTG MLOs), -~
~ HEX DTG MLs), ":", HEX DTGQ(S10s), HEX DT S1s)]
return

getZBCD ————————————=
Get two BCD digits using the HEX2 nodifier. Wthin the range 0-9,
hex and BCD are the same, so this is useful for setting the clock
inits BCD format.

get 2BCD:
serin 16, b96, [HEX2 t enp]

return

21

BS2 Data Collection Proto Board

AD'ead ===

Configure the ADC for the channel/node set by the bits of ADcnfg,
then take an ADC reading, returning the result in the word variable
ADres. The program should set up the node bit (ADmbde; 1 = single
ended, 0 = differential) and channel (ADch; 1 = chl; 0 = ch 0) before
executing a Gosub to this routine. Note that when the node is
differential, the channel selection indicates which channel is

consi dered to be the + connection for the nmeasurenent.

ADr ead:

ADcnfg = Abcnfg | 94001 ' Set start bit and nsbf.
| ow ADC_CS ' Activate the ADC.

shi ftout DATA , CLK, I sbfirst,[ADcnfg\4] ' Send config bits.
shiftin DATA , CLK, nsbpost, [ADres\ 12] ' CGet data bhits.

hi gh ADC _CS ' Deactivate the ADC

return Return to program

22

