
Stamp Applications
March 1998, presented courtesy of
Nuts & Volts Magazine

Nuts & Volts magazine hosts a monthly column for BASIC Stamp® enthusiasts called
Stamp Applications. Nuts & Volts has kindly granted us permission to reproduce this
column, which relates to the G12864 serial graphics display. If you like what you see,
consider subscribing to N&V for continuing coverage of

• BASIC Stamp projects

• Robotics

• Lasers

• Communications

• Microcontrollers

• Automation

• Alternative Energy

• and much, much more!

To check out N&V for yourself, phone 1-800-783-4624 or visit their site on the Web at
www.nutsvolts.com.

Stamp Applications (March ’98):

Goin’ GUI
with a Graphics Display

Demonstration application linking
BASIC Stamp II to a serial graphics display
by Jon Williams

GRAPHICAL User Interfaces (GUIs) have been a
PC standard for some time and, with the cost of
intelligent graphic displays on the decline, GUIs
are making their way into embedded
applications. This month's project is a very
simple pumping station simulator using the
G12864 as the display. Since the circuitry is so
simple, I assembled the project on Parallax's
BASIC Stamp Activity Board (BSAC).

I've known Scott Edward for a few years now,
and I've got to say one thing: the guy solves
problems. A little over a year ago, I was
considering a project using a graphical (versus
character-based) LCD. It didn't take much
research to convince myself that the project
wasn't really practical, considering the Stamp's
limited resources. Not long thereafter, I was
chatting with Scott and asked him if he'd ever
considered a backpack for graphic LCDs. I could
sense Scott grinning as he said, “Be patient,
Jon—I'm working on something you'll like.” He
wasn't kidding.

Scott's latest serial marvel is the G12864
Serial Graphics LCD. The module combines a
128x64-pixel backlit LCD with a serial interface.
The G12864 can simultaneously display text
(four lines of 16 characters) and graphics. Serial
commands even allow you to draw lines with
code. Since the G12864 comes with an excellent
reference and code samples, our focus will be
applying the combined text/graphics capability
in a project. Let's get started.

All projects require planning, and this one is

no exception. In fact, the use of a graphics
display and the creation of those graphics
requires even more planning and work. Here's
an overview:

• Plan the project.
• Develop the graphics.
• Download graphics to the G12864.
• Write and test code.

The Project. As I just stated, our project is a
very simple pumping station simulator. Please
keep in mind that the purpose of this project is
to demonstrate some of the capabilities of the
G12864. Actual pumping station controls are
much more sophisticated than what we'll
present here.

Our project simulates a flow sensor by reading
a potentiometer with the RCTIME function. The
input is scaled to a maximum flow of about 1600
units. The program takes the flow reading and
turns on up to four pumps to meet the demand.
The pumps are capable of supplying 100, 200,
400, and 800 units, respectively, for a maximum
combined output of 1500 units. If the flow
demand exceeds the combined pump output by
25 units, the next pumping level is selected. If
the total demand exceeds 1520 units, our station
is shut down and must be reset.

For the display, I wanted a graphic that
showed each of the four pumps, their status, and
the flow demand. Pump status is displayed
graphically—sort of (more on this later). The
flow demand is output as a four-digit number.

Stamp Applications, March 1998

2

While the G12864 is capable of displaying
graphic images, it does not have the ability to
display "sprites" (portions of a graphic page). So
how am I going to display my pump status
graphically? With text, that's how! Okay, okay, I
know this sounds a bit confusing. Let me
elaborate.

The G12864 contains 16 pages of non-volatile
flash memory, with each page holding a 128x64
bit graphic image. The first three pages of
memory are special. Pages zero and one contain
the font used for text displays. The image on
page two is called the splash screen.
Configuration switch 6 on the G12864 allows the
splash screen to be displayed at power-up. We'll
set this switch on to automatically display our
pump station graphic.

Each character on the font pages is eight
pixels wide by 16 pixels tall, and all the
characters up to ASCII 127 are predefined. This
leaves room (on page 1) for up to 32 custom
characters (ASCII codes 128 to 159). Since text
and graphics can be combined on the G12864,
custom characters will be used to indicate pump
status. I designed my graphic so that each pump
occupies a 16x16 pixel region. This means that
two characters are needed to display each pump
state: off, on, or error.

Developing G12864 Graphics. As with text
editors, everyone has their favorite graphics
program. Mine happens to be Paint Shop Pro
(PSP) from Jasc, Inc. (see sources). PSP is one of
the most popular shareware programs available
today. I use it daily in my professional and
personal projects—it's that good. In the
following description, PSP key commands are
indicated in parentheses. If you're using another
graphics program, please refer to its
documentation.

I start by creating a 16-color image (File |
New) that is 128 pixels wide by 64 pixels tall.
Since I'm going to combine text and graphics, I
paint a checkerboard pattern to show me where
the characters will fall. Each checker is eight
pixels wide by 16 pixels tall (the same size as a

character). I used white and light cyan as my
checker colors. Use what you want, but keep
these background colors very light. This will
make the conversion to a two-color graphic—
necessary for the G12864—easier. I saved (File
| Save As) this template as G12864.BMP.

With the template saved, I make a copy (Shift-
D) and create my pump station master graphic.
There's not a heck of a lot I can tell you here; if
you're not particularly good at graphics design,
you may want to enlist the help of a friend who
is. Start with a sketch on paper or a white
board. As you make progress, make a copy
(Shift-D) so that you're not forced to start all
over from a mistake. Once you've got your
master graphic complete to your liking, save it
(File | Save As). My project master is called
PUMPSTA0.BMP (Figure 1).

Figure 1. Master graphic.

You may be a bit puzzled by my master as it
shows two pumps off, one on, and one with an
error. Again, this is my master graphic and
won't be downloaded to the G12864. Notice that
I also defined where my flow value will be
displayed by changing the appropriate checkers
to yellow.

I made a copy of this image and cut out all of
the pumps (background color is white; make
selection then press Delete). Now I convert to a
two-color image (Colors | Decrease Color Depth
| 2 Colors). With light background colors, I used
the Gray Values/Weighted/Nearest Color
method. The resulting image is saved as
PUMPSTA1.BMP (Figure 2). When converting
photos (like Scott's cat in the demo) use the
Error Diffusion method. You may need to
experiment with the brightness and contrast of
the image to get the desired result.

Stamp Applications, March 1998

3

Figure 2. Background image.

With our background image complete, the last
step in the graphics process is to add the pump
graphics to font page 1. Start by making back-
up files of the font pages that come with the
G12864 (ALPHA0.BMP and ALPHA1.BMP). I
made another copy of the master graphic,
reduced it to two colors, then copied (select the
area, then Ctrl-C) the pumps and pasted (Ctrl-
E) the font page. The custom characters will
have ASCII codes of 128 to 133. Be very careful
not to disturb the other characters—you could
get unexpected results when attempting to
display text. With the pump images in place, the
new font page is saved as ALPHA1PS.BMP
(Figure 3).

Figure 3. Font with custom symbols.

With the graphics complete, we need to
download them to the G12864. If you're using
Windows 3.x, you can use BMPX.EXE, a DOS
command-line utility supplied with the G12864.
Start by removing power from the G12864 and
setting configuration switch 5 (Protect/Write)
and switch 6 (Blank/Screen 2) to ON. Connect
the G12864 to your PC (Com1 or Com2) with a
nine-pin serial cable and power it up.

To download the updated font page at 9600
baud, you'd use the following syntax:

BMPX COM1 9600 ALPHA1PS.BMP

If everything is connected properly, the image

will show up in the display. When the download
is complete, you will be prompted to save the
image to the EE memory. If you respond "Yes"
(Y, then Enter), you will be asked for a page (0
to 15). Press 1, then Enter. Since page 1 is a font
page, you will be asked to confirm the save to
EEPROM. Press Y, then Enter, and the page
will be written to memory. Repeat this process
with PUMPSTA1.BMP and save it to page 2 (the
splash screen).

While BMPX.EXE works fine from a DOS
window in Windows95, I prefer graphical
programs. Since Scott very generously supplied
the source code for BMPX, I translated it and
created a Win95 utility called LCDID (Figure 4).
You can download LCDID.ZIP from my FTP
directory or www.seetron.com.

Figure 4. Screenshot of Windows
downloading utility.

After the images are downloaded and written,
return configuration switch 5 to OFF (Protect),
set switch 1 to ON (Demo), then cycle the power
on the G12864. In demo mode, all 16 pages are
displayed sequentially. This will let you check
your new font page and splash page. Once you're
satisfied, return switch 1 to OFF (Run) and
cycle the power again.

The Code. With the real hard work done, it's
time to write our program (refer to Listing 1).
The program is very simple—as far as BS2
programs go—but there are a couple of things
worth pointing out.

Stamp Applications, March 1998

4

The G12864 uses ASCII character 16 (Ctrl-P)
to position the text cursor. There are two ways
to use the positioning command: text and
binary. Using the text method, you would follow
the positioning code with the ASCII text of the
desired screen position (i.e., "25 "). The last
character of the ASCII screen is a space to
terminate the positioning mode.

In an embedded application like this one, the
binary method is preferred. Simply add the
desired cursor position (0 to 63) to 64 and send
the byte after the positioning command. A
constant, FloPos, is defined as 64+25. This will
be sent after the positioning command to put the
flow reading at character position 25.

Since my station only has four pumps, a
nibble-sized variable is used to store the status
of the pumps (0 is OFF, 1 is ON). I overlaid bit-
variables to make displaying pump status easy.

The program starts by waiting for one second.
This gives the G12864 time to initialize before
sending commands. After the delay, we clear the
text screen and update the display with the
subroutine called ShoFlo. This routine starts by
sending the new flow value. The DEC4
parameter in the serial output command causes
the flow to be displayed with four characters

(using leading zeros).
After displaying the flow, we calculate the

status of the pumps. This is a simple matter of
dividing the flow demand by 100 and storing
this value in the variable called pumps. If the
flow demand is greater than 25 units more than
our current pump combination can supply, we
move up to the next level. The status of each
pump is displayed with our custom characters.
Two characters are needed for each pump. This
routine takes advantage of the overlaid
variables to calculate the correct status
character to display.

Our flow sensor is actually an RC circuit and
the BS2's RCTIME function is used to return
the value. RCTIME is a bit different that the
BS1's POT function in that the value is not
scaled. The maximum value is dependent upon
the components used and the circuit
configuration. I ran a small test on my BSAC
and found that RCTIME returned a maximum
value of 6150. Since I wanted the flow range to
span from zero to 1600, I had to multiply the
RCTIME value by 0.26. This is accomplished
with the */ (star-slash) operator and a value of
$0043 (0.26 * 256). Refer to the Feb. '98 issue for
details on using the */ operator.

Figure 5. Photo of G12864 graphics-display demo driven by BS2 on Stamp Activity Board.

Stamp Applications, March 1998

5

When I checked the code, I found that it
worked fine, except that the response was jerky
if I moved the potentiometer too quickly. I
remember a trick that Scott Edwards described
some time ago about simple digital filtering.
Basically, you take a portion of the new reading
and add it to a portion of the previous reading.
After some experimenting, I found that a 60/40
(old/new) ratio and a slight pause between
readings gave me a response that seemed
realistic. Once again the */ operator was used to
get the proportional values from each variable.

The last thing to do is check our flow for an
error condition. If this happens, we transfer to
an infinite loop called OvrFlo. The code in this
loop will run until the Stamp is reset. A couple
of small loops within this routine cause the
pumps (error condition) and the word "Error" to
flash.

Done. Simple program, not-so-simple task
getting it all running, but a very worthwhile
exercise in this age of graphical interfaces.
Download the code and give it a try. Then
change the graphics and roll your own. You'll
find that the G12864 is very easy to use, and
gives you tremendous versatility in user
interface. Figure 5 is a photo of the completed
project.

For those of you not using the BASIC Stamp
Activity Board, connect the RC circuit shown in
Figure I-14a of the BASIC Stamp Programming
Manual (V 1.8) to pin 7. And for those of you
that develop interesting new font pages, please
drop me a copy—I'd love to see them.

Beginner's Corner. In the event you haven't
heard, Parallax sponsors a listserv for Stamps.
The listserv is an excellent resource for Stamp
programmers of all levels. Check out the

Parallax website for details on subscribing.
There have been several recent posts from

beginners that have Stamps, but don't know
what to do with them, or how to do it. This is not
an uncommon problem—particularly for users
that don't have a lot of electronics experience.
What to do?

Shell out the $80 for Parallax's BASIC Stamp
Activity Board. To those of you on a limited
budget, the cost probably seems steep, but I can
tell you that it will be money well spent. You'd
spend much more than that in time and money
trying to duplicate its circuitry and ease of use.

The BSAC can be used with the Stamp 1 or
Stamp 2 (but not at the same time!), and has
switches, LEDs, a potentiometer, a speaker, and
RC network for smoothing PWM signals, and a
lot more. The BSAC is ideal for testing sub-
circuits and code fragments (a demo disk is
included). It even comes with a "wall-wart"
power supply so you won't go through too many
batteries experimenting. If you want to stop
worrying about circuits and start learning to
code, get a BSAC.

Sources. For more information on the BASIC
Stamp, contact Parallax Inc., 3805 Atherton
Road no. 102, Rocklin, CA 95765; phone 916-
624-8333; http://www.parallaxinc.com.

You can contact the author, Jon Williams, at
jonwms@aol.com or check out his home page at
http://members.aol.com/jonwms. His ftp archive
is ftp://members.aol.com/jonwms/stamps.

Scott Edwards Electronics, Inc. manufactures
serial LCDs and other electronic products.
Internet: info@seetron.com or www.seetron.com.
Call or write Scott Edwards Electronics, Inc.
2700 E. Fry Blvd. Suite A4, Sierra Vista, AZ
85635; 520-459-4802.

Stamp Applications, March 1998

6

' Listing 1
' Nuts & Volts: Stamp Applications, March 1998
' -----[Title]---
'
' File...... PUMPS.BS2
' Purpose... SEE G12864 Serial Graphics LCD Demo
' Author.... Jon Williams
' E-mail.... jonwms@aol.com
' WWW....... http://members.aol.com/jonwms
' Started... 24 JAN 98
' Updated... 15 FEB 98
' -----[Program Description]---
'
' This program is a very simplistic pumping station demonstration that
' takes advantage of the graphics capabilities of the Scott Edwards
' Electronics G12864 Serial Graphics LCD. "Flow" demand is sensed by the
' BS2 (potentiometer input) and converted to a group of pumps. The flow
' and pump status is displayed on the G12864.
'
' Two custom screens are downloaded to the G12864: the pumping station
' graphic and an updated fonts screen. Graphics animation is accomplished
' by adding custom characters to the second fonts page and combining the
' custom characters with the pump station graphic.
'
' G12864 Configuration Switch Settings:
' 1 : Off (Run)
' 2 : On (9600 baud)
' 3 : On (BL On)
' 4 : Off (Esc)
' 5 : Off (Protect EE - must be On to download custom graphics)
' 6 : On (Screen 2)

' -----[Revision History]--
'
' 25 JAN 98 : Version 1 complete
' 15 FEB 98 : Added filtering to smooth sensor input

' -----[Constants]---
'
FloSnsr CON 7 ' RCTIME input for *flow* (on BSAC)
HiFlow CON 1520 ' highest allowable flow
GxLCD CON 2 ' serial output on pin 2
N9600 CON $4054 ' 9600-bps output
FloPos CON 64+25 ' Print flow at position 25
' G12864 codes
ClrLCD CON 12 ' Clear LCD text screen
PosCmd CON 16 ' Position cursor
' Custom character addresses
Pmp0a CON 128 ' pump off, left
Pmp0b CON 129 ' pump off, right

Stamp Applications, March 1998

7

Pmp1a CON 130 ' pump on, left
Pmp1b CON 131 ' pump on, right
ErrorA CON 132 ' pump with X, left
ErrorB CON 133 ' pump with X, right

' -----[Variables]---
'
rawFlow VAR WORD ' raw flow from *sensor* (RCTIME)
oldFlow VAR WORD ' last flow reading
newFlow VAR WORD ' new flow reading
fCheck VAR BYTE ' overflow check
pumps VAR NIB ' pump status
pump1 VAR pumps.Bit0
pump2 VAR pumps.Bit1
pump3 VAR pumps.Bit2
pump4 VAR pumps.Bit3
x VAR BYTE ' loop counter
' -----[EEPROM Data]---
'
' -----[Initialization]--
'
Init: PAUSE 1000 ' let the G12864 initialize

' clear text; all pumps off
SEROUT GxLCD,N9600,[ClrLCD]
newFlow = 0
GOSUB ShoFlo

' -----[Main Code]---
'
Main: HIGH FloSnsr ' discharge RC cap

PAUSE 5
RCTIME FloSnsr,1,rawFlow ' read the sensor
rawFlow = rawFlow */ $0043 ' scale to 0 - 1600 (approx)

' (rawFlow * 0.26)
' filter by combining in 60/40 (old/raw) ratio
newFlow = (oldFlow */ $009A)+(rawFlow */ $0066)
IF newFlow > HiFlow THEN OvrFlo ' flow is too high -- shut down
GOSUB ShoFlo ' update the display
oldFlow = newFlow ' save last flow reading
PAUSE 500 ' delay between readings
GOTO Main ' do it all again

' -----[Subroutines]---
'
ShoFlo: ' show flow

SEROUT GxLCD,N9600,[PosCmd,FloPos,DEC4 newFlow]
' calculate pumps
pumps = newFlow / 100
fCheck = newFlow // 100
IF fCheck < 25 THEN ShPmps ' if over by 25+, inc pump level

Stamp Applications, March 1998

8

pumps = pumps + 1
' show pumps

ShPmps: SEROUT GxLCD,N9600,[PosCmd, 65,(Pmp0a+(2*pump1)),(Pmp0b+(2*pump1))]
SEROUT GxLCD,N9600,[PosCmd, 81,(Pmp0a+(2*pump2)),(Pmp0b+(2*pump2))]
SEROUT GxLCD,N9600,[PosCmd, 97,(Pmp0a+(2*pump3)),(Pmp0b+(2*pump3))]
SEROUT GxLCD,N9600,[PosCmd,113,(Pmp0a+(2*pump4)),(Pmp0b+(2*pump4))]
RETURN

OvrFlo: pumps = %0000
SEROUT GxLCD,N9600,[PosCmd,FloPos," Error"]
FOR x = 1 TO 49 STEP 16
 SEROUT GxLCD,N9600,[PosCmd,(64+x),Pmp0a,Pmp0b]
NEXT
PAUSE 500
SEROUT GxLCD,N9600,[PosCmd,FloPos, " "]
FOR x = 1 TO 49 STEP 16
 SEROUT GxLCD,N9600,[PosCmd,(64+x),ErrorA,ErrorB]
NEXT
PAUSE 500
GOTO OvrFlo

