
LCD Serial Backpack App Note No. 2

Getting Graphic:
Defining Custom LCD Characters

Block graphics add new symbols
and enable animated effects

ALPHANUMERIC LCDS are inexpensive and
easy to use. But there are times when you’d like
to add some graphical pizzazz to your display
without the expense and code overhead of a
graphics display.

With a little ingenuity, you may find that the
block-graphics capabilities of standard LCDs
can fill the bill without busting your budget.
This application note will show you how to:

• Define and use custom characters.
• Create simple animations.
• Redefine visible symbols for complex

animations.

Background. This application note is intended
primarily for displays equipped with the LCD
Serial Backpack™, a daughterboard that gives
14-pin alphanumeric LCDs an easy-to-use serial
interface. However, the principles described
here apply to standard LCD modules as well.

Character-Generator ROM and RAM. When
you send the ASCII code for a character like “A”
to an LCD module, the module’s controller looks
up the appropriate 5x8-pixel pattern in ROM
(read-only memory) and displays that pattern on
the LCD. That character-generator ROM

contains 192 bit maps corresponding to the
alphabet, numbers, punctuation, Japanese
Kanji characters, and Greek symbols.

The ROM is part of the main LCD controller
(e.g., HD44780, KS0066, etc.), is mask-
programmed, and cannot be changed by the
user. The manufacturers do offer alternative
symbols sets in ROM for European and Asian
languages, but most U.S. distributors stock only
the standard character set shown in the LCD
Serial Backpack manual.

Alphanumeric LCD controllers do not allow
you to turn individual pixels on or off—they just
let you pick a particular pattern (corresponding
to an ASCII code) and display it on the screen.

If you can’t change the ROM and you can’t
control pixels, how do you create graphics on
these LCDs? Easy. There’s a 64-byte hunk of
RAM (random-access memory) that the LCD
controller uses in the same way as character-
generator (CG) ROM. When the controller
receives an ASCII code in the range that’s
mapped to the CG RAM, it uses the bit patterns
stored there to display a pattern on the LCD.
The main difference is that you can write to CG
RAM, thereby defining your own graphic
symbols.

Scott Edwards Electronics / LCD App Note No. 2

2

Use this worksheet to design custom-character bitmaps for alphanumeric LCDs. Color in
the squares representing black pixels. Then, for each row, add the numbers from the tops
of each column in which there’s a colored-in square. Write the result in the Data (value)
blank. These are the byte values you will download to CG RAM to create your symbols.

Custom-Symbol Worksheet

Bit Map Data
(value)

124816

124816

124816

124816

Bit Map Data
(value)

124816

124816

124816

124816

Figure 2.1 Worksheet for calculating custom-character bitmaps.

Each byte of CG RAM is mapped to a five-bit
horizontal row of pixels, and LCD characters are
typically eight rows high, so 64 bytes of CG
RAM is enough to define eight custom
characters. These characters correspond to
ASCII codes 0 through 7, which normally serve
as control codes for marking the beginning of a
serial transmission or ringing the bell on a

terminal. Since these have no meaning to an
LCD module, the designers appropriated them
for CG RAM.

When an LCD is first powered up, CG RAM
contains random bits—garbage. LCDs with
newer LCD Serial Backpacks are initialized
with a set of wedge- and block-shaped symbols
that can be used to draw large characters on 4-

Scott Edwards Electronics / LCD App Note No. 2

3

line displays; see app note 1 in this series.
Either way, you may overwrite the CG RAM
with your own symbols.

Writing to CG RAM. As the Backpack manual
shows, writing to CG RAM is a lot like moving
the cursor to a particular position on the display
and displaying characters at that new location.
The steps are:

• Send the instruction-prefix byte (254). For
non-Backpack users, this is the same as
setting the RS bit for the next byte. With the
Backpack, RS is automatically reset after
one byte.

• Set the CG RAM address by sending a byte
from 64 to 127 (locations 0–63 in CG RAM).

• Send bytes with the bit patterns for your
symbol(s). The LCD controller automatically
increments CG RAM addresses, just as it
does cursor positions on the display.

• To leave CG RAM, send the instruction
prefix (byte 254) followed by a valid display
address (e.g. 128, 1st character of 1st line);
the clear-screen instruction (byte 1); or the
home instruction (byte 2). Now bytes are
once again being written to the visible
portion of the display.

The Backpack manual shows an example that
defines character 0 as a diamond shape and
displays a row of diamonds across the screen.
Figure 2.1 is a worksheet to help you calculate
bit patterns for your own symbols. Figure 2.2
shows an example symbol, while listings 2.1
through 2.3 are PBASIC (Stamps I and II) and
QBASIC examples that define and use these
symbols.

Bit Map Data
(value)

124816
14
16
16
31
27
27
31
0

Figure 2.2 Example custom symbol.

Simple Animation. You can create a sort of
animation by rapidly printing a series of custom
characters at the same screen position. Program
listings 2.4 through 2.6 (BS1, BS2 and QBASIC)
define a rotating stick symbol using four graphic
characters and “spin” this symbol in the middle
of the second line of the display.

Animation in Multiple Locations. There’s a
useful side effect to the way the LCD controller
uses CG RAM. Normally, we define a pattern in
CG RAM, then print the character. But you can
also change the CG RAM for characters that are
already on the screen, and their appearance will
change. This opens up two neat possibilities:

• You can create animations with more frames
than the eight CG RAM locations. Since new
bit patterns are loaded from an external
computer, the only limit on the number of
frames is that computer’s storage capacity.

• You can animate multiple screen locations
simultaneously. Just print the graphics
character you want to animate in multiple
screen locations, then cycle different bit
patterns through its CG RAM. All instances
of that character will change.

Listings 2.7 through 2.9 show an example of this
kind of animation in BS1, BS2 and QBASIC
programs. The second line of the display is filled
with character 0, then that character is
redefined in an expanding-box pattern. The
result is 16 simultaneous animations.

Sources

Scott Edwards Electronics (SEE)
manufactures and sells the LCD Serial
Backpack™, a daughterboard that gives 14-pin
alphanumeric LCDs an easy-to-use serial
interface. The Backpack automatically
initializes the LCD, receives serial data at a
user-selectable rate of 2400 or 9600 baud and
converts received data into LCD-compatible
parallel output. The Backpack supports all
standard alphanumeric LCDs up to 80
characters total (4x20 or 2x40).

Scott Edwards Electronics / LCD App Note No. 2

4

The Backpack is available by itself for
installation on a user-supplied LCD, or
preinstalled to one of several high-quality
supertwist LCDs. See the catalog for current
offerings.

SEE also offers 4x40 serial LCD modules with
additional terminal-emulation and special-
features including automatic large-number
display.

You may download a current SEE catalog
from the customer-support FTP archive:
ftp.nutsvolts.com, in pub/nutsvolts/scott. Or
contact—

Scott Edwards Electronics
PO Box 160
Sierra Vista, AZ 85635
ph: 520-459-4802 fax: 520-459-0623

' Listing 2.1: GRPHIX1.BAS
' (Defining custom graphics symbols with LCD Backpack & BS1)
' This program demonstrates how to define and use custom
' symbols through the LCD Serial Backpack. The symbol patterns
' are loaded into the LCD from the Stamp's EEPROM. Thereafter,
' whenever you send an ASCII value of 0 - 7 to the LCD, it
' displays the custom symbol defined (until power is turned off).

SYMBOL lcd = 0 ' Serial output to LCD.
SYMBOL I = 254 ' Instruction prefix for LCD.
SYMBOL lcdCls = 1 ' Clear-screen instruction for LCD.
SYMBOL cgRAM = 64 ' Starting point of CG RAM.
SYMBOL line2 = 192 ' Position: start of 2nd line.
SYMBOL count = b11 ' Counter for EEPROM addressing.
SYMBOL char = b10 ' EEPROM byte.

' Custom-character definitions stored as bit patterns in the
' Stamp's EEPROM. Each character is made up of 8 bytes. Each byte
' represents a row of 5 pixels (only the lowest 5 bits are
' actually used). Comments at the end of each EEPROM entry show
' the appearance of the corresponding graphic.
EEPROM (0,4,2,31,2,4,0,0) ' right arrow
EEPROM (0,4,8,31,8,4,0,0) ' left arrow
EEPROM (4,14,21,4,4,0,0,0) ' up arrow
EEPROM (0,0,0,4,4,21,14,4) ' down arrow
EEPROM (8,20,20,8,5,6,5,5) ' single-character "OK"
EEPROM (14,17,17,31,27,27,31,0) ' locked
EEPROM (14,16,16,31,27,27,31,0) ' unlocked
EEPROM (17,18,23,9,19,4,7,0) ' single-character "1/2"

' =====Program begins by downloading custom character patterns
' from EEPROM after a 1-second delay for LCD initialization.
pause 1000 ' Wait a second
serout lcd,n2400,(I,cgRAM) ' Point to character-generator RAM.
for count = 0 to 63 ' For each of 8 chars x 8 bit rows.
 read count,char ' Get the bit pattern from EEPROM.
 serout lcd,n2400,(char) ' Write the data to LCD CG RAM.
next

Scott Edwards Electronics / LCD App Note No. 2

5

serout lcd,n2400,(I,lcdCls) ' Clear the LCD.
serout lcd,n2400,("CUSTOM GRAPHICS") ' Label top line.

' ============= DEMO PROGRAM ============
' Move to line 2, show custom-character symbols.
serout lcd,n2400,(I,line2)
for count = 0 to 7
 serout lcd,n2400,(count," ") ' Print character, then a space.
next
end

' Listing 2.2: GRPHIX1.BS2
' (Defining custom graphics symbols with LCD Backpack & BS2)
' This program demonstrates how to define and use custom
' symbols through the LCD Serial Backpack. The symbol patterns
' are loaded into the LCD from the Stamp's EEPROM. Thereafter,
' whenever you send an ASCII value of 0 - 7 to the LCD, it
' displays the custom symbol defined (until power is turned off).
' Install a jumper at BPS on Backpack for 9600 baud operation

lcd con 0 ' Serial output to LCD.
I con 254 ' Instruction prefix for LCD.
lcdCls con 1 ' Clear-screen instruction for LCD.
cgRAM con 64 ' Starting point of CG RAM.
line2 con 192 ' Position: start of 2nd line.
N9600 con $4054 ' 9600 baud output to Backpack.
cnt var byte ' Counter for EEPROM addressing.
char var byte ' EEPROM byte.

' Custom-character definitions stored as bit patterns in the
' Stamp's EEPROM. Each character is made up of 8 bytes. Each byte
' represents a row of 5 pixels (only the lowest 5 bits are
' actually used). Comments at the end of each EEPROM entry show
' the appearance of the corresponding graphic.
RA data 0,4,2,31,2,4,0,0 ' right arrow
LA data 0,4,8,31,8,4,0,0 ' left arrow
UA data 4,14,21,4,4,0,0,0 ' up arrow
DA data 0,0,0,4,4,21,14,4 ' down arrow
OK data 8,20,20,8,5,6,5,5 ' single-character "OK"
LK data 14,17,17,31,27,27,31,0 ' locked
UL data 14,16,16,31,27,27,31,0 ' unlocked
HF data 17,18,23,9,19,4,7,0 ' single-character "1/2"

' =====Program begins by downloading custom character patterns
' from EEPROM after a 1-second delay for LCD initialization.
pause 1000 ' Wait a second
serout lcd,n9600,[I,cgRAM] ' Point to character-generator RAM.
for cnt = 0 to 63 ' For each of 8 chars x 8 bit rows.
 read cnt,char ' Get the bit pattern from EEPROM.

Scott Edwards Electronics / LCD App Note No. 2

6

 serout lcd,n9600,[char] ' Write the data to LCD CG RAM.
next

serout lcd,n9600,[I,lcdCls] ' Clear the LCD.
serout lcd,n9600,["CUSTOM GRAPHICS"] ' Label top line.

' ============= DEMO PROGRAM ============
' Move to line 2, show custom-character symbols.
serout lcd,n9600,[I,line2]
for cnt = 0 to 7
 serout lcd,n9600,[cnt," "] ' Print character, then a space.
next
end

' Listing 2.3: QGRPHX1.BAS
' (Defining custom graphics with LCD Backpack and QBASIC)
' This program demonstrates how to define and use custom
' symbols through the LCD Serial Backpack. The symbol
' patterns are loaded into the LCD from data tables at the
' end of this QBASIC program. Once the symbols are downloaded,
' they can be displayed by sending an ASCII value of 0 - 7.
' Symbols are stored in the LCD's cg RAM, so they stay in
' memory until LCD power is turned off.
' Install a jumper at BPS on the Backpack to configure it
' for 9600 baud. Connect serial input to PC COM1 (or change
' "OPEN" instruction to other COM port below).

CONST I = 254 ' Instruction prefix for LCD.
CONST lcdCls = 1 ' Clear-screen instruction for LCD.
CONST cgRAM = 64 ' Starting point of CG RAM.
CONST line2 = 192 ' Position: start of 2nd line.

CLS : PRINT "Running custom-graphics demo for LCD Serial Backpack..."
' Set up the serial port: COM1, baud, parity, data bits, stop bits,
' disable all handshaking (CD, CS, DS, OP).
OPEN "com1:9600,N,8,1,CD0,CS0,DS0,OP0" FOR OUTPUT AS #1
PRINT #1, CHR$(I); CHR$(cgRAM); ' Point to CG RAM.
' Write the bit patterns stored in DATA statements below
' into the LCD's CG RAM.
FOR count = 1 TO 64 ' For each of 8 chars x 8 bit rows.
 READ char% ' Get the bit pattern from DATA.
 PRINT #1, CHR$(char%); ' Write the data to LCD CG RAM.
NEXT
PRINT #1, CHR$(I); CHR$(lcdCls); ' Clear the LCD.
SLEEP 1 ' Delay a second.
PRINT #1, "CUSTOM GRAPHICS"; ' Print label.
PRINT #1, CHR$(I); CHR$(line2); ' Move to line 2.

Scott Edwards Electronics / LCD App Note No. 2

7

FOR count = 0 TO 7
 PRINT #1, CHR$(count); " "; ' Print custom symbols 0-7.
NEXT
END

' Custom-character definitions stored as bit patterns in the
' DATA statements. Each character is made up of 8 bytes. Each byte
' represents a row of 5 pixels (only the lowest 5 bits are
' actually used). Comments before each DATA entry describe the
' appearance of the corresponding graphic.
' right arrow:
DATA 0,4,2,31,2,4,0,0
' left arrow:
DATA 0,4,8,31,8,4,0,0
' up arrow:
DATA 4,14,21,4,4,0,0,0
' down arrow:
DATA 0,0,0,4,4,21,14,4
' single-character "OK"
DATA 8,20,20,8,5,6,5,5
' locked (padlock closed)
DATA 14,17,17,31,27,27,31,0
' unlocked (padlock open)
DATA 14,16,16,31,27,27,31,0
' single-character "1/2"
DATA 17,18,23,9,19,4,7,0

' Listing 2.4: ANIM1.BAS (Animation demo with LCD Backpack & BS1)
' This program demonstrates how to create animation by cycling
' through custom graphics characters at a single screen location.

SYMBOL lcd = 0 ' Serial output to LCD.
SYMBOL I = 254 ' Instruction prefix for LCD.
SYMBOL lcdCls = 1 ' Clear-screen instruction for LCD.
SYMBOL cgRAM = 64 ' Starting point of CG RAM.
SYMBOL animPos = 199 ' Position: middle of 2nd line.
SYMBOL char = b11 ' Pointer to animation 'frame.'
SYMBOL count = b10 ' Counter for EEPROM addressing.

' Custom-character definitions stored as bit patterns in the
' Stamp's EEPROM. Each character is made up of 8 bytes. Each byte
' represents a row of 5 pixels (only the lowest 5 bits are
' actually used). Comments at the end of each EEPROM entry show
' the appearance of the corresponding graphic.
EEPROM (4,4,4,4,4,0,0,0) ' |
EEPROM (16,8,4,2,1,0,0,0) ' \
EEPROM (0,0,31,0,0,0,0,0) ' -
EEPROM (1,2,4,8,16,0,0,0) ' /

Scott Edwards Electronics / LCD App Note No. 2

8

' =====Program begins by downloading custom character patterns
' from EEPROM after a 1-second delay for LCD initialization.
pause 1000 ' Wait a second
serout lcd,n2400,(I,cgRAM) ' Point to character-generator RAM.
for count = 0 to 31 ' For each of 8 chars x 8 bit rows.
 read count,char ' Get the bit pattern from EEPROM.
 serout lcd,n2400,(char) ' Write the data to LCD CG RAM.
next

serout lcd,n2400,(I,lcdCls) ' Clear the LCD.
serout lcd,n2400,(" ANIMATION") ' Label top line.

' ============= DEMO PROGRAM LOOP ============
again:
 serout lcd,n2400,(I,animPos,char) ' Move to line 2, show char.
 char = char + 1 // 4 ' Next character, range 0-3.
 pause 50 ' Short pause.
goto again ' Repeat endlessly.

' Listing 2.5: ANIM1.BS2 (Animation demo with LCD Backpack & BS2)
' This program demonstrates how to create animation by cycling
' through custom graphics characters at a single screen location.
' Install a jumper at BPS on Backpack for 9600 baud operation.

lcd con 0 ' Serial output to LCD.
I con 254 ' Instruction prefix for LCD.
lcdCls con 1 ' Clear-screen instruction for LCD.
cgRAM con 64 ' Starting point of CG RAM.
animPos con 199 ' Position: middle of 2nd line.
n9600 con $4054 ' 9600 baud.
char var byte ' Pointer to animation 'frame.'
cnt var byte ' Counter for EEPROM addressing.

' Custom-character definitions stored as bit patterns in the
' Stamp's EEPROM. Each character is made up of 8 bytes. Each byte
' represents a row of 5 pixels (only the lowest 5 bits are
' actually used). Comments at the end of each EEPROM entry show
' the appearance of the corresponding graphic.
one data 4,4,4,4,4,0,0,0 ' |
two data 16,8,4,2,1,0,0,0 ' \
three data 0,0,31,0,0,0,0,0 ' -
four data 1,2,4,8,16,0,0,0 ' /

' =====Program begins by downloading custom character patterns
' from EEPROM after a 1-second delay for LCD initialization.
pause 1000 ' Wait a second
serout lcd,n9600,[I,cgRAM] ' Point to character-generator RAM.
for cnt = 0 to 31 ' For each of 8 chars x 8 bit rows.

Scott Edwards Electronics / LCD App Note No. 2

9

 read cnt,char ' Get the bit pattern from EEPROM.
 serout lcd,n9600,[char] ' Write the data to LCD CG RAM.
next

serout lcd,n9600,[I,lcdCls] ' Clear the LCD.
serout lcd,n9600,[" ANIMATION"] ' Label top line.

' ============= DEMO PROGRAM LOOP ============
again:
 serout lcd,n9600,[I,animPos,char] ' Move to line 2, show char.
 char = char + 1 // 4 ' Next character, range 0-3.
 pause 75 ' Short pause.
goto again ' Repeat endlessly.

' Listing 2.6: QANIM1.BAS (Animation demo with LCD Backpack & QBASIC)
' This program demonstrates how to create animation by cycling
' through custom graphics characters at a single screen location.
' Install a jumper at BPS on the Backpack to configure it
' for 9600 baud. Connect serial input to PC COM1 (or change
' "OPEN" instruction to other COM port below).
CONST I = 254 ' Instruction prefix for LCD.
CONST lcdCls = 1 ' Clear-screen instruction for LCD.
CONST cgRAM = 64 ' Starting point of CG RAM.
CONST animPos = 199 ' Position: middle of 2nd line.

CLS : PRINT "Running animation demo for LCD Serial Backpack..."
PRINT "Press ctrl-BREAK to end"
' Set up the serial port: COM1, baud, parity, data bits, stop bits,
' disable all handshaking (CD, CS, DS, OP).
OPEN "com1:9600,N,8,1,CD0,CS0,DS0,OP0" FOR OUTPUT AS #1
PRINT #1, CHR$(I); CHR$(cgRAM); ' Point to CG RAM.
' Write the bit patterns stored in DATA statements below
' into the LCD's CG RAM.
FOR count = 1 TO 32 ' For each of 8 chars x 8 bit rows.
 READ char% ' Get the bit pattern from DATA.
 PRINT #1, CHR$(char%); ' Write the data to LCD CG RAM.
NEXT
PRINT #1, CHR$(I); CHR$(lcdCls); ' Clear the LCD.
SLEEP 1 ' Delay a second.
PRINT #1, " ANIMATION"; ' Print label.

again:
' Move to middle of line 2 and show animation symbol.
 PRINT #1, CHR$(I); CHR$(animPos); CHR$(char%);
 char% = (char% + 1) MOD 4 ' Next character, range 0-3.
 PLAY "P16" ' Play silent note to pause.
GOTO again ' Repeat endlessly (until Break).
END

Scott Edwards Electronics / LCD App Note No. 2

10

' Custom-character definitions stored as bit patterns in the
' DATA statements. Each character is made up of 8 bytes. Each byte
' represents a row of 5 pixels (only the lowest 5 bits are
' actually used). Comments before each DATA entry describe the
' appearance of the corresponding graphic.
' symbol: |
DATA 4,4,4,4,4,0,0,0
' symbol: \
DATA 16,8,4,2,1,0,0,0
' symbol: -
DATA 0,0,31,0,0,0,0,0
' symbol: /
DATA 1,2,4,8,16,0,0,0

' Listing 2.7: ANIM2.BAS (Animation demo with LCD Backpack & BS1)
' This program demonstrates how to create animation by cycling
' different bit patterns through a single cg RAM location.
' This lets you animate multiple screen locations simultaneously.

SYMBOL lcd = 0 ' Serial output to LCD.
SYMBOL I = 254 ' Instruction prefix for LCD.
SYMBOL lcdCls = 1 ' Clear-screen instruction for LCD.
SYMBOL cgRAM = 64 ' Starting point of CG RAM.
SYMBOL line2 = 192 ' Position: middle of 2nd line.
SYMBOL frame = b11 ' Pointer to animation 'frame.'
SYMBOL count = b10 ' Counter for EEPROM addressing.
SYMBOL cgStart = b9 ' Location of cgRAM data in EEPROM.
SYMBOL cgEnd = b8 ' End of cgRAM data in EEPROM.
SYMBOL cgData = b7 ' Individual byte of cgRAM data.

' Custom-character definitions stored as bit patterns in the
' Stamp's EEPROM. Each character is made up of 8 bytes. Each byte
' represents a row of 5 pixels (only the lowest 5 bits are
' actually used). It's hard to simulate these patterns in text,
' but the progression of patterns is meant to look like an
' expanding square that starts as a dot and grows.
EEPROM (0,0,0,4,0,0,0,0) ' Dot.
EEPROM (0,0,10,4,10,0,0,0) ' larger..
EEPROM (0,0,14,10,14,0,0,0) ' larger..
EEPROM (0,21,10,21,10,21,0,0) ' larger..
EEPROM (0,31,17,17,17,31,0,0) ' larger..
EEPROM (0,21,0,17,0,21,0,0) ' larger.

' =====Program begins by clearing the screen after a 1-second
' delay for LCD initialization. It then downloads first graphic,
' labels the top line of the screen, and prints 15 character 0s
' across the second line. The character 0s will be animated.
pause 1000 ' Wait a second

Scott Edwards Electronics / LCD App Note No. 2

11

serout lcd,n2400,(I,lcdCls) ' Clear the LCD.
frame = 0: gosub newPattern
serout lcd,n2400,(" ANIMATION") ' Label top line.
serout lcd,n2400,(I,line2) ' Move to 2nd line.
for frame = 0 to 15
 serout lcd,n2400,(0) ' Print character 0 across 2nd line.
next

' ============= DEMO PROGRAM LOOP ============
again:
 frame = frame + 1 // 6 ' Next pattern, range 0-5.
 gosub newPattern ' Change character-0 pattern.
 pause 100 ' Short pause.
goto again ' Repeat endlessly.

' ============= RELOAD CUSTOM CHARACTER PATTERN ============
' This subroutine accepts a frame value from 0 to 5 and writes the
' corresponding data from Stamp EEPROM into the cg RAM location for
' LCD character 0 (not "0" but ASCII 0; the pattern that prints
' when you send a byte containing %00000000 to the LCD). This causes
' any screen location containing character 0 to change appearance
' to match the new pattern! The technique lets you animate multiple
' screen locations simultaneously.
newPattern:
 cgStart = frame * 8 ' First bit pattern to load.
 cgEnd = cgStart + 7 ' Last bit pattern to load.
 serout lcd,n2400,(I,cgRAM) ' Point to character 0 of cgRAM.
 for count = cgStart to cgEnd ' For each of eight bit patterns..
 read count,cgData ' Get the bit pattern from EEPROM..
 serout lcd,n2400,(cgData) ' Write the data to LCD CG RAM.
 next
 serout lcd,n2400,(I,128) ' Return to display RAM, top line.
return

' Listing 2.8: ANIM2.BS2 (Animation demo with LCD Backpack & BS2)
' This program demonstrates how to create animation by cycling
' different bit patterns through a single cg RAM location.
' This lets you animate multiple screen locations simultaneously.
' Install a jumper at BPS on Backpack for 9600 baud operation.

lcd con 0 ' Serial output to LCD.
I con 254 ' Instruction prefix for LCD.
lcdCls con 1 ' Clear-screen instruction for LCD.
cgRAM con 64 ' Starting point of CG RAM.
n9600 con $4054 ' 9600 baud.
line2 con 192 ' Position: middle of 2nd line.
frame var byte ' Pointer to animation 'frame.'

Scott Edwards Electronics / LCD App Note No. 2

12

cnt var byte ' Counter for EEPROM addressing.
cgStart var byte ' Location of cgRAM data in EEPROM.
cgEnd var byte ' End of cgRAM data in EEPROM.
cgData var byte ' Individual byte of cgRAM data.

' Custom-character definitions stored as bit patterns in the
' Stamp's EEPROM. Each character is made up of 8 bytes. Each byte
' represents a row of 5 pixels (only the lowest 5 bits are
' actually used). It's hard to simulate these patterns in text,
' but the progression of patterns is meant to look like an
' expanding square that starts as a dot and grows.
frame1 data 0,0,0,4,0,0,0,0 ' Dot.
frame2 data 0,0,10,4,10,0,0,0 ' larger..
frame3 data 0,0,14,10,14,0,0,0 ' larger..
frame4 data 0,21,10,21,10,21,0,0 ' larger..
frame5 data 0,31,17,17,17,31,0,0 ' larger..
frame6 data 0,21,0,17,0,21,0,0 ' larger.

' =====Program begins by clearing the screen after a 1-second
' delay for LCD initialization. It then downloads first graphic,
' labels the top line of the screen, and prints 15 character 0s
' across the second line. The character 0s will be animated.
pause 1000 ' Wait a second
serout lcd,n9600,[I,lcdCls] ' Clear the LCD.
frame = 0: gosub newPattern
serout lcd,n9600,[" ANIMATION"] ' Label top line.
serout lcd,n9600,[I,line2] ' Move to 2nd line.
for frame = 0 to 15
 serout lcd,n9600,[0] ' Print character 0 across 2nd line.
next

' ============= DEMO PROGRAM LOOP ============
again:
 frame = frame + 1 // 6 ' Next pattern, range 0-5.
 gosub newPattern ' Change character-0 pattern.
 pause 150 ' Short pause.
goto again ' Repeat endlessly.

' ============= RELOAD CUSTOM CHARACTER PATTERN ============
' This subroutine accepts a frame value from 0 to 5 and writes the
' corresponding data from Stamp EEPROM into the cg RAM location for
' LCD character 0 (not "0" but ASCII 0; the pattern that prints
' when you send a byte containing %00000000 to the LCD). This causes
' any screen location containing character 0 to change appearance
' to match the new pattern! The technique lets you animate multiple
' screen locations simultaneously.
newPattern:
 cgStart = frame * 8 ' First bit pattern to load.
 cgEnd = cgStart + 7 ' Last bit pattern to load.
 serout lcd,n9600,[I,cgRAM] ' Point to character 0 of cgRAM.

Scott Edwards Electronics / LCD App Note No. 2

13

 for cnt = cgStart to cgEnd ' For each of eight bit patterns..
 read cnt,cgData ' Get the bit pattern from EEPROM..
 serout lcd,n9600,[cgData] ' Write the data to LCD CG RAM.
 next
 serout lcd,n9600,[I,128] ' Return to display RAM, top line.
return

' Listing 2.9: QANIM2.BAS (Animation demo with LCD Backpack & QBASIC)
' This program demonstrates how to create animation by cycling
' different bit patterns through a single cg RAM location.
' This lets you animate multiple screen locations simultaneously.
' Install a jumper at BPS on the Backpack to configure it
' for 9600 baud. Connect serial input to PC COM1 (or change
' "OPEN" instruction to other COM port below).

DECLARE SUB newPattern (frame%)
CONST lcd = 0 ' Serial output to LCD.
CONST I = 254 ' Instruction prefix for LCD.
CONST lcdCls = 1 ' Clear-screen instruction for LCD.
CONST cgRAM = 64 ' Starting point of CG RAM.
CONST line2 = 192 ' Position: start of 2nd line.
CONST home = 128 ' Position: start of 1st line.
DIM SHARED bitPats(47) AS INTEGER ' Storage for bit patterns.

CLS : PRINT "Running animation demo for LCD Serial Backpack..."
PRINT "Press ctrl-BREAK to end"
FOR count% = 0 TO 47 ' For each of 6 chars x 8 bit rows.'
 READ bitPats(count%) ' Get the bit pattern from DATA..
NEXT ' ..and store it in bitPats array.

' Set up the serial port: COM1, baud, parity, data bits, stop bits,
' disable all handshaking (CD, CS, DS, OP).
OPEN "com1:9600,N,8,1,CD0,CS0,DS0,OP0" FOR OUTPUT AS #1

PRINT #1, CHR$(I); CHR$(lcdCls); ' Clear the LCD.
SLEEP 1 ' Delay a second.
PRINT #1, " ANIMATION"; ' Print label.
count% = 0: newPattern (count%) ' Set bit pattern.
PRINT #1, CHR$(I); CHR$(line2); ' Move to 2nd line.
FOR count% = 1 TO 16 ' Print 16 ASCII-0
 PRINT #1, CHR$(0); ' ..graphics across
NEXT ' ..line 2.
count% = 0 ' Clear count.
again:
 count% = (count% + 1) MOD 6 ' Cycle count, 0-5.
 newPattern (count%) ' Change bit pattern to animate.
 PLAY "P16" ' Play silent note to pause.
GOTO again

Scott Edwards Electronics / LCD App Note No. 2

14

' Custom-character definitions stored as bit patterns in the
' DATA statements. Each character is made up of 8 bytes. Each byte
' represents a row of 5 pixels (only the lowest 5 bits are
' actually used). It's hard to simulate these patterns in text,
' but the progression of patterns is meant to look like an
' expanding square that starts as a dot and grows.
DATA 0,0,0,4,0,0,0,0
DATA 0,0,10,4,10,0,0,0
DATA 0,0,14,10,14,0,0,0
DATA 0,21,10,21,10,21,0,0
DATA 0,31,17,17,17,31,0,0
DATA 0,21,0,17,0,21,0,0

SUB newPattern (frame%)
' Given a frame number from 0 to 5, select the appropriate 8 bytes
' of bit patterns stored in bitPats array and write those bytes to
' the LCD's cg RAM.
cgStart% = frame% * 8
cgEnd% = cgStart% + 7
PRINT #1, CHR$(I); CHR$(cgRAM); ' Point to cg RAM.
FOR count% = cgStart% TO cgEnd% ' Write the bit pattern.
 PRINT #1, CHR$(bitPats(count%));
NEXT
PRINT #1, CHR$(I); CHR$(home); ' Cursor to line 1, char 0.
END SUB

